Biogenic Silver Oxide Nanoparticles for Inhibition of TMT Rod Corrosion in Marine Environment
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 397-403
Abstract
The current study explores the utilization of Thespesia populnea mediated biogenically synthesized silver oxide using as a protective coating for TMT rods in a marine environment. The process commenced with the extraction of the inhibitor from the leaves of the plant using ethanol followed by the preparation of silver oxide nanoparticles (AgONPs). Subsequently, TMT rods were coated with these AgONPs and subjected to the corrosive conditions of marine environment. In this investigation, AgONPs were synthesized employing chemical precipitation method and their size effects were thoroughly examined using techniques such as, Fourier Transform Infrared Spectroscopy, Fourier Ultraviolet-visible Spectroscopy and SEM. Remarkably, when TMT rods were coated with 10 layers of AgONPs, the corrosion rate efficiency escalated to 97.1% for 8 mm rods, 95.2% for 10 mm rods and 98.7% for 16 mm rods. Furthermore, the inhibition data conform to the Langmuir adsorption isotherm suggesting that the action of AgONPs followed a physical adsorption mechanism.
Full Text
Reference
Aminul, I. M. D., Corrosion behaviours of high strength TMT steel bars for reinforcing cement concrete structures, The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5), Procedia Eng., 125, 623-630 (2015).
https://doi.org/10.1016/j.proeng.2015.11.084
Donatello, S., Palomo, A. and Fernandez, J. A., Durability of very high volume fly ash cement pastes and mortars in aggressive solutions, Cem. Concr. Compos., 38, 12–20 (2013).
http://dx.doi.org/10.1016/j.cemconcomp.2013.03.001
Fernandes, J. S. and Montemor, F., Materials for Construction and Civil Engineering, Springer, 679–716. (2015).
Gretchen, J., International measures of Prevention, application and economics of corrosion Technologies studies by NACE International, 15835 Park Ten Place, Houston, TX 77084 (2016).
Harsimran S., Santosh, K. and Rakesh, K., Overview of Corrosion and its Control: A Critical, Review Proceedings on Engineering Sciences, 3(1), 13-24 (2021).
https://doi.org/10.24874/PES03.01.002
Hou, B. R., Li, X. G., Ma, X. M., Du, C. W., Zhang, D. W., Zheng, M., Xu, W. C., Lu, D. Z., Ma, F. B., The cost of corrosion in China, npj Mater. Degrad., 1, 4 (2017).
https://doi.org/10.1038/s41529-017-0005-2
Jeffrey, K. B., Corrosion of Metals: Factors, Types and Prevention Strategies, J. Chemical Health Risks, 14(1), 79-87 (2024).
Kalaiselvi, M., Sakunthala, P., Kesavan, D. and Lawrence, N., Adsorption and corrosion inhibition performance of Tunbergia fragrans extract on mild steel in acid medium, Mater. Today Proc., 33(7), 4054–4058 (2020).
https://doi.org/10.1016/j.matpr.2020.06.533
Kandasamy, K. and Rajasingh, P., Hydrothermal Synthesis and Enhanced Corrosion Inhibition Activity of CdS QDs towards Zn Surface, J. Environ. Nanotechnol., 10(2), 06-09 (2021).
https://doi.org/10.13074/jent.2021.06.212436
Kavitha, R., Monikandon, S., Kesavan, D. and Sankar, A., Evidence for homogeneous adsorption of samanea saman extract inhibitor on steel surface, Int. J. Chem. Sci., 15(2), 120(2017).
Kesavan, D., Gopiraman, M. and Sulochana. N., Green inhibitors for corrosion of metals: A Review, Chem. Sci. Rev. Lett., 1(1), 1-8 (2012).
Koushik, B. G., Van, D. S. N., Mamme, M. H., Van I. Y. and Terryn, H., Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate, J. Mater. Sci. Technol., 62, 254−267 (2021).
http://dx.doi.org/10.1016/j.jmst.2020.04.061
Kuznetsov, Y. I., Triazoles as a class of multifunctional corrosion inhibitors. Review. Part II. 1, 2, 3-Benzotriazole and its derivatives. Iron and steels, Int. J. Corros. Scale Inhib., 9(3), 780-811 (2020).
Lavanya, M. N., Kesavan, D., Prabavathi, N. and Sulochana, N., Studies on the inhibitive effect of 3-hydroxyflavone on the acid corrosion of mild steel, Surf. Rev. Lett., 16(6), 845-853 (2009).
https://doi.org/10.1142/S0218625X09013396
Li, X. G., Zhang, D. W., Liu, Z. Y., Li. Z., Du. C. W. and Dong, C. F., Materials science: Share corrosion data, Nat., 527(7579), 441−442 (2015).
https://doi.org/10.1038/527441a
Maaß, P. and Peter, P., Handbook of Hot‐Dip Galvanization, 1-19 (2011).
https://doi.org/10.1002/9783527636884
Meena, P., Pratap, S. A. and Tejavath, K., Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines, ACS Omega, 5(10), 5520-5528 (2020).
https://doi.org/10.1021/acsomega.0c00155
Mohammad, S. M. R., Kargar, M., Ghashang, M., Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles, Green Process. Synth., 7(3), 248–254 (2018).
https://doi.org/10.1515/gps-2016-0219
Nadaro, G. H., Alayli, Gungor, A. and Ince, S., Synthesis of Nanoparticles by Green Synthesis Method, Int. J. Innov. Res. Rev.,1(1), 6–9 (2017).
Pandian, B., Seyedmojtaba, G. and Mohammad, I., Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — A Review, Surf. Rev. Lett., 22(3), 1-8 (2015).
https://doi.org/10.1142/S0218625X15500407
Parthasarathy, P. and Narayanan, S. K., Effect of Hydrothermal Carbonization Reaction Parameters on, Environ. Prog. Sustain. Energy, 33(3), 676–680 (2014).
https://doi.org/10.1002/ep.11974
Rai, M. and Ingle, A., Role of nanotechnology in agriculture with special reference to management of insect pests, Appl. Microbiol. Biotechnol., 94(2), 287–293 (2012).
https://doi.org/10.1007/s00253-012-3969-4
Rai, M. and Yadav, A., Plants as potential synthesiser of precious metal nanoparticles: Progress and prospects, IET Nanobiotechnol., 7(3), 117–124 (2013).
https://doi.org/10.1049/iet-nbt.2012.0031
Rai, R. V. and Bai. J. A., Nanoparticles and their potential application as antimicrobials, Formatex, Microbiology Series, 3(1), 197–209 (2011).
Raja, V. S., Grand Challenges in Metal Corrosion and Protection Research, Front. Met. Alloy, 1, 8941-81 (2022).
https://doi.org/10.3389/ftmal.2022.894181
Sakunthala, P. A., Charles. A., Kesavan, D. and Alex, R. V., Phytochemical screening and adsorption studies of brugmansia suaveolens, Chem. Sci. Rev. Lett., 2(5), 319-322 (2013).
Salem, S. S. and Fouda, A., Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview, Biol. Trace Elem. Res., 199(1), 344–370 (2021).
https://doi.org/10.1007/s12011-020-02138-3
Soltis, J., Passivity and passivity breakdown [M]// Encyclopedia of Interfacial Chemistry, 1 ed., Elsevier, 396−400 (2018).
Vedalakshmi, R., Rajagopal, K. and Palaniswamy, N., Longterm corrosion performance of rebar embedded in blended cement concrete under macro cell corrosion condition, Constr. Build. Mater., 22, 186-199 (2008).
https://doi.org/10.1016/j.conbuildmat.2006.09.004
Wang, Y. K., Ultimate strength and mechano-electrochemical investigations of steel marine structures subject to corrosion Dessration, Southampton: University of Southampton, (2015).
Xhanari, K. and Finšgar, M., Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review, Arabian J. Chem., 12(8), 4646−4663 (2019).
https://doi.org/10.1016/j.arabjc.2016.08.009
Xian, M. Z., Zai, Y. C., Hong, F. L., Teng, Z., Yu, L. Z., Zi, C. L., Corrosion resistances of metallic materials in environments containing chloride ions: A review, Trans. Nonferrous Met. Soc. China, 32, 377−410 (2022).
https://doi.org/10.1016/S1003-6326(22)65802-3
Zhang, X. M. and Chen, W. P., Review on corrosion-wear resistance performance of materials in molten aluminum and its alloys, Transactions of Nonferrous Metals Society of China, 25(6), 1715−1731 (2015).