Open Access

Assessment of Surface Water Quality Using Entropy-WQI, Fuzzy-TOPSIS Analysis, Irrigation Indices and Spatial Interpolation Approaches in Mahanadi River Basin, Odisha, India

Abhijeet Das das.abhijeetlaltu1999@gmail.com
Department of Civil Engineering, C. V. Raman Global University, Bhubaneswar, OR, India


J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 182-212

https://doi.org/10.13074/jent.2024.03.241526

PDF


Abstract

The current study is aimed at the assessment of surface water quality in the Mahanadi River, Odisha and its suitability for agricultural and consumption purposes, utilizing various indices of water quality such as Entropy Water Quality Index, Osmotic Pressure, Potential Salinity, Residual Sodium Carbonate, Sodium Adsorption Ratio and Kelly Index. Multi-criteria decision-making (MCDM) mechanisms namely, fuzzy-TOPSIS modeling and GIS tools were used; additionally, the suitability of river water for industrial uses was evaluated using indices such as Ryznar Stability Index and Puckorius scaling index. From 2019 to 2023, samples from 19 sampling stations were collected and 21 physical and chemical parameters were evaluated and compared with the normative recommendations advised by WHO. The dispersion of surface water quality on land use changes was discovered using GIS approaches. Additionally, using ArcGIS software, the spatial variability of hydrological processes was determined using the IDW interpolation approach. The pH levels of certain sampling points were slightly above the acceptable limit. Tests revealed that the Total coliform (TC) and turbidity levels in the water samples exceeded critical limits, particularly in areas of the urban river basin that were irrigated with wastewater. The calculated values of EWQI lie between 14.6 and 1066. Entropy WQI values designated 2 locations (ST-8, 19) out of 19 sampling locations as poor category and another one testing point (ST-9) as extremely poor category. The study found that 84.21% of the water samples were of excellent quality for drinking, while 15.78% of locations had poor or extremely poor water quality. However, some indices were favorable for the usage of the water for irrigation purposes. Magnesium hazard (MH) readings at two sampling sites were above 50%, indicating that they were inappropriate for irrigation. USSL (United States Salinity Laboratory) diagrams categorized the water samples as C1-S1 (low salinity and low sodium) for almost 18 sites and C4-S3 (very high salinity and high sodium) for only ONE sample, respectively, suggesting river water’s irrigation suitability. Further, Piper diagrams revealed that most investigated waters were Ca2+-Mg2+-Cl- water type. In a later stage, from Gibb’s diagram, it was found that most samples fall under the rock-water dominance. Based on the above and all other investigation results, it was concluded that water is suitable for irrigation and drinking purposes in all sites, except for three locations. The reason may be due to long-term use of wastewater, anthropogenic activities, over-extraction of surface water and changes in land use patterns. To sum up, it is advantageous to combine physicochemical properties, EWQI, fuzzy-TOPSIS, and GIS tools to evaluate surface water suitability for consumption and agriculture and their regulating variables. The strategy utilized in this work will aid the water management authorities in ensuring the supply of safe water for stakeholders.

Full Text

Reference


Aliyu, A. G., Jamil, N. R. B., Adam, M. B. B. and Zulkeflee, Z., Spatial and seasonal changes in monitoring water quality of Savanna River system, Arabian J. Geosci., 13(2), 1–13 (2020).

https://doi.org/10.1007/s12517-019-5026-4

Ameen, H. A., Spring water quality assessment using water quality index in villages of Barwari Bala, Duhok, Kurdistan Region, Iraq. Appl. Water Sci., 9(8), 1–12 (2019).

https://doi.org/10.1007/s13201-019-1080-z

Amiri V, Rezaei, M. and Sohrabi, N., Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran Environ Earth Sci., 72, 3479-3490 (2014).

https://doi.org/10.1007/s1266 5-014-3255-0

Angello, Z. A., Treanckner, J. and Behailu, B. M., Spatio-temporal evaluation and quantification of pollutant source contribution in little Akaki river, Ethiopia: conjunctive application of factor analysis and multivariate receptor model, Pol. J. Environ. Stud., 30 (1), 23–34 (2021).

https://doi.org/10.15244/pjoes/119098

Asnake, K., Worku, H. and Argaw, M., Integrating River restoration goals with urban planning practices: the case of Kebena river, Addis Ababa, Heliyon, 7(7), e07446 (2021).

https://doi.org/10.1016/j.heliyon.2021.e07446

Aydin, H., Ustaoglu, F., Tepe, Y., Soylu, E. N., Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods, Environ. Forensics, 22(1–2), 270–287 (2020).

https://doi.org/10.1080/15275922.2020.1836074

Baird, R., Standard methods for the examination of water and wastewater, 23rd Edition, American Public Health Association, 23rd Edition, (2017).

Balasubramanian, A., Hydrogeological investigation of Tam- braparani River Basin, Tamilnadu, University of Mysore, 1–30 (1986).

Chabuk, A., Al, M. Q., Al, M. A., Al, A. N., Hussain, H. M. and Laue, J., Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software, Arab J. Geosci., 13, 654 (2020).

https://doi.org/10.1007/s12517-020-05575-5

Chen, J., Zhang, Y. and Chen, Z., Improving assessment of groundwater sustainability with analytic hierarchy process and information ENTROPY method: a case study of the Hohhot Plain China, Environ. Earth Sci., 73, 2353–2363 (2015).

https://doi.org/10.1007/s12665-014-3583-0

Chifflet, S., Briant, N., Tes´an, O. J. A., Zaaboub, N., Amri, S., Radakovitch, O., Bǎnaru, D. and Tedetti, M., Distribution and accumulation of metals and metalloids in planktonic food webs of the Mediterranean Sea (MERITE- HIPPOCAMPE campaign), Mar. Pollut. Bull., 186, 114384 (2023).

https://doi.org/10.1016/j.marpolbul.2022.114384

Choudhury, S. and Chatterjee, A., Microbial application in remediation of heavy metals: an overview, Arch. Microbiol., 204(5), 1–15 (2022).

https://doi.org/10.1007/s00203-022-02874-1

Doneen, L. D., Notes on water quality in Agriculture. Published as water Science and Engineering, Paper 4001, Department of water Science and Engineering, University of California (1965).

Dortaj, A., Maghsoudy, S., Ardejani, F. D. and Eskandari, Z., A hybrid multi-criteria decision-making method for site selection of subsurface dams in semi-arid region of Iran, Groundwater Sustainable Dev., 10, 100284 (2020).

https://doi.org/10.1016/j.gsd.2019.100284

Edo, H., Arus, J., Nurs, B. and Behulu, F., Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: application of innovative trend analysis method, J. Hydrol. Reg. Stud., 37, 100915 (2021).

http://dx.doi.org/10.1016/j.ejrh.2021.100915

Edokpayi, J. N., Odiyo, J. O. and Durowoju, O. S., Impact of wastewater on surface water quality in developing countries: a case study of South Africa, InTech., (2017).

http://dx.doi.org/10.5772/66561

Egbueri, J. C., Enyigwe, M. T. and Ayejoto, D. A., Modeling the impact of potentially harmful elements on the groundwater quality of a mining area (Nigeria) by integrating NSFWQI, HERisk code, and HCs, Environ. Monit. Assess., 194(3), 1–28 (2022).

https://doi.org/10.1007/s10661-022-09789-w

Egbueri, J. C., Mgbenu, C. N., Digwo, D. C. and Nnyigide, C. S., A multi-criteria water quality evaluation for human consumption, irrigation and industrial purposes in Umunya area, southeastern Nigeria, Int. J. Environ. Anal. Chem., 103(14), 3351-3375 (2021).

https://doi.org/10.1080/03067319.2021.1907360

Fagbote, E. O., Olanipekun, E. O. and Uyi, H. S., Water quality index of the ground water of bitumen deposit impacted farm settle- ments using entropy weighted method, Int. J. Environ Sci. Technol., 11, 127–138 (2014).

https://doi.org/10.1007/s13762-012-0149-0

Fan, J., Fan, D. and Wu, Y., Spatiotemporal variations of heavy metal historical accumulation records and their influencing mechanisms in the Yangtze River estuary, Sci. Total Environ., 854, 158733 (2023a).

https://doi.org/10.1016/j.scitotenv.2022.158733

Fipps, G., Irrigation water quality standards and salinity manage- ment strategies, Texas FARMER Collection, 1-17 (2003).

Galib, S. M., Rashid, M. A., Chaki, N., Mohsin, A. B. M. and Joadder, M. A. R., Seasonal variation, and community structure of fishes in the Mahananda River, Bangladesh, J. Fish., 4(1), 325–334 (2016).

https://doi.org/10.17017/jfish.v4i1.2016.139

Gibbs, R. J., Mechanisms Controlling World Water Chemistry, Sci., 170(3962), 1088–1090 (1970).

https://doi.org/10.1126/science.170.3962.1088

Goodarzi, M. R., Niknam, A. R. R., Jamali, V. and Pourghasemi, H. R., Aquifer vulnerability identification using DRASTIC-LU model modification by fuzzy analytic hierarchy process, Earth Syst. Environ., 8, 5365–5380 (2022).

https://doi.org/10.1007/s40808-022-01408-4

Guo, T., Xue, X. & Li, R., Application of TOPSIS in environmental quality assessment of Huafei River in Kaifeng. Meteorological and Environmental Sciences 31 (2), 59–62 (2008).

Hamid, A., Bhat, S. U. and Jehangir, A., Local determinants influencing stream water quality, Appl. Water Sci., 10 (24), 1–16 (2020).

https://doi.org/10.1007/s13201-019-1043-4

Haritash, A. K., Gaur, S. and Garg, S., Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India, Appl Water Sci., 6, 383–392 (2016).

https://doi.org/10.1007/s13201-014-0235-1

Hatfield, J. L. and Prueger, J. H., Temperature extremes: effect on plant growth and development, Weather Clim. Extrem., 10, 4–10 (2015).

https://doi.org/10.1016/j.wace.2015.08.001

Horton, R. K. R. K., An index number system for rating water quality, J. Water Pollut. Control Fed., 37(3), 300–306 (1965).

Hossain, M. B., Rahman, M. A., Hossain, M. K., Nur, A. A. U., Sultana, S., Semme, S., Albeshr, M. F., Arai, T., Yu, J., Contamination status and associated ecological risk assessment of heavy metals in different wetland sediments from an urbanized estuarine ecosystem, Mar. Pollut. Bull., 185, 114246 (2022a).

https://doi.org/10.1016/j.marpolbul.2022.114246

Hwang, C. L. and Yoon, K., Methods for multiple attribute decision making. In: Multiple attribute decision making, Springer, Berlin, 58–191 (1981).

Kadam AK, Wagh VM, Muley AA, Umrikar BN, Sankhua RN., Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India, Model Earth Syst. Environ., 5, 951–962 (2019).

https://doi.org/10.1007/s40808-019-00581 -3

Kapoor, D., Singh, M. P., Heavy metal contamination in water and its possible sources, Heavy Met. Environ., Elsevier, 179–189 (2021).

Kelly WP., Alkali soils—their formation, properties, and reclamation. Reinhold Publication, New York (1951).

Kiss, T., F´ori´an, S., Szatm´ari, G. and Sipos, G., Spatial distribution of microplastics in the fluvial sediments of a transboundary river–A case study of the Tisza River in Central Europe, Sci. Total Environ., 785, 147306 (2021).

https://doi.org/10.1016/j.scitotenv.2021.147306

Langelier, W. F., The analytical control of anti-corrosion water treatment, J. Am. Water Work Assoc., 28, 1500–1521 (1936).

https://doi.org/10.1002/j.1551-8833.1936.tb13785.x

Leads, R. R., Weinstein, J. E. Kell, S. E., Overcash, J. M., Ertel, B. M. and Gray, A. D., Spatial and temporal variability of microplastic abundance in estuarine intertidal sediments: implications for sampling frequency, Sci. Total Environ., 859, 160308 (2023).

https://doi.org/10.1016/j.scitotenv.2022.160308

Lermontov, A., Yokoyama, L., Lermontov, M. and Machado, M. A. S., River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators, 9(6), 1188–1197 (2009).

https://doi.org/10.1016/j.ecolind.2009.02.006

Madhloom, H. M. and Alansari, N., Geographical information system and remote sensing for water resources management case study: the Diyala River, Iraq, Int. J. Civil Eng. Technol., 9(12), 971–984 (2018).

Magesh, N. S., Krishnakumar, S., Chandrasekar, N. and Soundranayagam, J. P., Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India, Arab J. Geosci., 6(11), 4179–4189 (2013).

https://doi.org/10.1007%2Fs12517-012-0673-8

Manea, M. H., Al, T. B. S. and Al, S. Y. I., Hydro-chemical characteristics and evaluation of surface water of Shatt Al-Hilla, Babil Governorate, Central Iraq, Iraqi J. Sci., 60 (3), 583–600 (2019).

https://doi.org/10.24996/ijs.2019.60.3.17

Mankikar, T., Comparison of indices for scaling and corrosion tendency of groundwater: case study of unconfined aquifer from Mahoba District, UP State, Appl. Water Sci., 11(6), 1–12 (2021).

http://dx.doi.org/10.1007/s13201-021-01423-3

Mekonnen, B., Haddis, A. and Zeine, W., Assessment of the effect of solid waste dump site on surrounding soil and River Water quality in tepi town, southwest Ethiopia, J. Environ. Public Health, 2020, 1–9 (2020).

https://doi.org/10.1155/2020/5157046

Menberu, Z., Mogesse, B. and Reddythota, D., Evaluation of water quality and eutrophication status of Hawassa Lake based on different water quality indices, Appl. Water Sci., 11(3), 1–10 (2021).

http://dx.doi.org/10.1007/s13201-021-01385-6

Mustapha, A., Aris, A. Z., Juahir, H., Ramli, M. F. and Kura, N. U., River water quality assessment using environmentric techniques: case study of Jakara River Basin, Environ. Sci. Pollut. Control Ser., 20(8), 5630–5644 (2013).

https://doi.org/10.1007/s11356-013-1542-z

Namara, W. G., Hirpo, G. M. and Feyissa, T. A., Evaluation of impact of climate change on the watershed hydrology, case of Wabe Watershed, Omo Gibe River basin, Ethiopia, Arabian J. Geosci., 15(5), 1356 (2022).

http://dx.doi.org/10.1007/s12517-022-10585-6

Negi, P., Mor, S. and Ravindra, K., Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment, Environ. Dev. Sustain., 22, 1455–1474 (2020).

https://doi.org/10.1007/s10668-018-0257-1

Neina, D., The role of soil pH in plant nutrition and soil remediation, Appl. Environ. Soil Sci., 2019 (3), 5794869 (2019).

https://doi.org/10.1155/2019/5794869

Nguyen, T. H., Helm, B., Hettiarachchi, H., Caucci, S. and Krebs, P., Quantifying the information content of a water quality monitoring network using principal component analysis: a case study of the freiberger mulde river basin, Germany, Water, 12(2), 420 (2020).

https://doi.org/10.3390/w12020420

Nour, H. E., Alshehri, F., Sahour, H., El, S. A. S., Tawfik, M., Assessment of heavy metal contamination and health risk in the coastal sediments of Suez Bay, Gulf of Suez, Egypt, J. Afr. Earth Sci., 195(4), 104663 (2022).

http://dx.doi.org/10.1016/j.jafrearsci.2022.104663

Omeka, M. E., Egbueri, J. C. and Unigwe, C. O., Investigating the hydrogeochemistry, corrosivity and scaling tendencies of groundwater in an agrarian area (Nigeria) using graphical, indexical, and statistical modelling, Arabian J. Geosci., 15(13), 1–24 (2022).

http://doi.org/10.1007/s12517-022-10514-7

Paliwal, K. V., Irrigation with saline water; Monogram no. 2, New Delhi, IARI (1972).

Pandey, D., Tiwari, A. D. and Mishra, V., On the occurrence of the observed worst flood in Mahanadi River basin under the warming climate, Weather Clim. Extremes, 38, 100520 (2022).

https://doi.org/10.1016/j.wace.2022.100520

Pandey, H. K., Tiwari, V., Kumar, S., Yadav, A. and Srivastava, S. K., Groundwater quality assessment of Allahabad smart city using GIS and water quality index, Sustain Water Resour. Manag., 6, 28 (2020).

https://doi.org/10.1007/s40899-020-00375-x

Peiravi, R. O., Mashreghi, M., Baigenzhenov, O. and Hosseini, B. A., Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/ cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters, Colloids Surf. A Physicochem. Eng. Asp., 656, 130355 (2023).

http://dx.doi.org/10.1016/j.colsurfa.2022.130355

Piper, A. M., A graphic procedure in the geochemical interpretation of water-analyses, Eos, Trans Am. Geophys. Union, 25(6), 914–928 (1944).

https://doi.org/10.1029/TR025i006p00914

Preisner, M., Surface water pollution by untreated municipal wastewater discharge due to a sewer failure, Environ. Process, 7(2), 767–780 (2020).

https://doi.org/10.1007/s40710-020-00452-5

Ramachandran, A., Sivakumar, K., Shanmugasundharamc, A., Sangunathan, U. and Krishnamurthy, R. R., Evaluation of potable ground- water zones identification based on WQI and GIS techniques in Adyar River basin, Chennai, Tamilnadu, India, Acta Ecol. Sin., 41(4), 285-295 (2020).

https://doi.org/10.1016/j.chnaes.2020.02.006

Ravikumar, P., Mohammad, A. M. and Somashekar, R. K., Water quality index to determine the surface water quality ofSankey tank and Mallathahalli Lake, Bangalore urban district, Karnataka, India, Appl. Water Sci., (2013).

https://doi.org/10.1007/s13201-013-0077-2

Rawat, K. S., Singh, S. K. and Gautam, S. K., Assessment of groundwater quality for irrigation use: a peninsular case study, Appl. Water Sci., 8(8), 1–24 (2018).

https://doi.org/10.1007/s13201-018-0866-8

Revelle, R., Criteria for recognition of sea water in ground- waters, Trans Amer Geophys Union, 22, 593–597 (1941).

https://doi.org/10.1029/TR022i003p00593

Ryznar, J. W. and Langelier, W.F., A new index for determining amount of calcium carbonate scale formed by a water [with discussion], Am. Water Works Assoc., 36(4), 472–486 (1944).

https://doi.org/10.1002/j.1551-8833.1944.tb20016.x

Sadi, N. S. and Damghani, K. K., Application of a fuzzy TOPSIS method base on modified preference ratio and fuzzy distance measurement in assessment of traffic police centers performance, Appl. Soft Comput., 10(4), 1028–1039(2010).

https://doi.org/10.1016/j.asoc.2009.08.036

Saha, P. and Paul, B., Groundwater quality assessment in an industrial hotspot through interdisciplinary techniques, Environ. Monit. Assess, 192(2), 326(2019).

https://doi.org/10.1007/s10661-019-7418-z

Saha, S., Reza, A. H. M. S. and Roy, M. K., Hydro-chemical evaluation of groundwater quality of the Tista floodplain, Rangpur, Bangladesh, Appl. Water Sci., 9(8), 1–12 (2019).

http://dx.doi.org/10.1007/s13201-019-1085-7

Sahoo, M. M. and Swain, J. B., Investigation, and comparative analysis of ecological risk for heavy metals in sediment and surface water in east coast estuaries of India, Mar. Pollut. Bull., 190, 114894 (2023).

https://doi.org/10.1016/j.marpolbul.2023.114894

Sajil, K. P. J., Elango, L. and James, E. J., Assessment of hydrochemistry and groundwater quality in the coastal area of South Chen- nai, India, Arab J. Geosci., 7, 2641–2653 (2014).

https ://doi.org/10.1007/s12517-013-0940-3

Sajil, K. P. J., Kokkat, A., Kurian, P. K. and James, E. J., Nutrient chemistry and seasonal variation in the groundwater quality of a Riverine Island on the west coast of Kerala India, Sustain Water Resour. Manag., 6, 3 (2020).

https://doi.org/10.1007/s40899-020-00358-y

Samal, P., Singarasubramanian, S. R., Manoj, M. C., Srivastava, J., Dsouza, N., Balakrishna, K., Chauhan, M. M., and Ali, S., Heavy metal contamination assessment and its associated human health risk evaluation in the Mahanadi River sediments, India, Int. J. Environ. Sci. Technol., 20(10), 10673-10694 (2022).

https://doi.org/10.1007/s13762-022-04630-w

Schoeller, H., Geochemistry of groundwater. In: groundwater studies: an international guide for research and practice, The UNESCO Press, Paris, (1977).

Şener, E. & Şener, Ş., Evaluation of groundwater vulnerability to pollution using fuzzy analytic hierarchy process method, Environ. Earth Sci., 73 (12), 8405–8424 (2015).

https://doi.org/10.1007/s12665-014-4001-3

Shannon, C. E., A mathematical theory of communication, The Bell System Technical Journal, 27, 379–423 (1948).

Sharma, A., Grewal, A. S., Sharma, D. and Srivastav, A. L., Heavy metal contamination in water: consequences on human health and environment, In: Metals in Water, Woodhead Publishing, 39–52 (2023a).

https://doi.org/10.1016/B978-0-323-95919-3.00015-X

Shil, S., Singh, U. K. and Mehta, P., Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS, Appl. Water Sci., 9(7), 1–21 (2019).

https://doi.org/10.1007/s13201-019-1045-2

Shil, S., Singh, U. K. and Mehta, P., Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS, Appl. Water Sci., 9 (7), 1–21 (2019).

http://dx.doi.org/10.1007/s13201-019-1045-2

Shweta, T., Bhavtosh, S., Prashant, S. and Rajendra, D., Water quality assessment in terms of water quality index, Am. J. Resour., 1(3), 34-38 (2013).

https://doi.org/10.12691/ajwr-1-3-3

Siefi, S., Karimi, H., Soffianian, A. R. and Pourmanafi, S., GIS-based multi criteria evaluation for thermal power plant site selection in Kahnuj County, SE Iran, C. Eng. Infrastruct. J., 50(1), 179–189 (2017).

https://doi.org/10.7508/ceij.2017.01.011

Singh, K. R., Goswami, A. P., Kalamdhad, A. S. and Kumar, B., Development of irrigation water quality index incorporating information entropy, Environ. Dev. Sustain, 22, 3119–3132 (2019).

https://doi.org/10.1007/s10668-019-00338-z

Sun, Y., Chen, F., Zafar, A., Khan, Z. I., Ahmad, K., Ch, S. A., Batool, A. I. and Nadeem, M., Assessment of potential toxicological risk for public health of heavy metal iron in diverse wheat varieties irrigated with various types of waste water in south asian country, Agric. Water Manag., 276, 108044 (2023).

https://doi.org/10.1016/j.agwat.2022.108044

Sylus, K. J. and Ramesh, H., Geo-statistical analysis of groundwater quality in an unconfined aquifer of Nethravathi and Gurpur river confluence, India, Model. Earth Syst. Environ., 4(4), 1555-1575 (2018).

https://doi.org/10.1007/s40808-018-0488-z

Tadesse, M., Tsegaye, D. and Girma, G., Assessment of the level of some physico- chemical parameters and heavy metals of Rebu river in oromia region, Ethiopia, MOJ Biol. Med., 3(3), 99–118 (2018).

https://doi.org/10.15406/mojbm.2018.03.00085

Tiwari, T. N. and Manzoor, A., Pollution of Subarnarekha River near Jamshedpur and the suitability of its water for irrigation, Indian J. Environ. Prot., 8(7), 494–497 (1988).

Tseng, M. L., Lin, Y. H., Chiu, A. S. and Chen, C. Y., Fuzzy AHP approach to TQM strategy evaluation, Industrial Engineering and Management Systems, 7(1), 34–43 (2008).

Ustaoğlu, F., Tas, B., Tepe, Y. and Topaldemir, H., Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res., 28(44), 62736–62754 (2021).

https://doi.org/10.1007/s11356-021-15135-3

Van, L. P. J. and Pedrycz, W., A fuzzy extension of Saaty’s priority theory, Fuzzy Sets Syst., 11(1–3), 229–241 (1983).

https://doi.org/10.1016/S0165-0114(83)80082-7

Wali, S. U., Alias, N. and Harun, S. B., Quality reassessment using water quality indices and hydrochemistry of groundwater from the Basement Complex section of Kaduna Basin, NW Nigeria, Appl. Sci., 2(10), 1–21 (2020).

https://doi.org/10.1007/s42452-020-03536-x

Wang, Z., Lin, K. and Liu, X., Distribution and pollution risk assessment of heavy metals in the surface sediment of the intertidal zones of the Yellow River Estuary, China, Mar. Pollut. Bull., 174(12), 113286 (2022).

https://doi.org/10.1016/j.marpolbul.2021.113286

Weldeyohanis, Y. H., Aneseyee, A. B. and Sodango, T. H., Evaluation of current solid waste disposal site based on socio-economic and geospatial data: a case study of Wolkite, Geo J., 87, 585–601 (2020).

https://doi.org/10.1007/s10708-020-10268-3

Wu, H., Chen, J., Qian, H., Zhang, X., Chemical characteristics, and quality assessment of groundwater of exploited Aquifers in beijiao water source of yinchuan, China: a case study for drinking, irrigation, and industrial purposes, J. Chem., 726340 (2015).

Wu, J., Li, P. and Qian, H., Groundwater quality in Jingyuan County, a semi-humid area in Northwest China, J. Chem., 8(2), 787–793 (2011).

http://dx.doi.org/10.1155/2011/163695

Yang, L., Ren, Q., Zheng, K., Jiao, Z., Ruan, X., Wang, Y., Migration of heavy metals in the soil-grape system and potential health risk assessment, Sci. Total Environ., 806(2), 150646 (2022).

https://doi.org/10.1016/j.scitotenv.2021.150646

Yu, W. and Tang, D., Application of TOPSIS model based on vague set entropy in the evaluation of groundwater quality, Adv. Mater. Res., 712–715, 452-456 (2013).

http://dx.doi.org/10.4028/www.scientific.net/AMR.712-715.452

Zaman, M., Shahid, S. A. and Heng, L., Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, Springer Open, Switzerland, (2018).

https://doi.org/10.1007/978-3-319-96190-3

Zaynab, M., Al, Y. R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A., Li, S., Health and environmental effects of heavy metals, J. King Saud. Univ. Sci., 34 (1), 101653 (2022).

https://doi.org/10.1016/j.jksus.2021.101653

Zeng, J., Ke, W., Deng, M., Tan, J., Li, C., Cheng, Y., Xue, S., A practical method for identifying key factors in the distribution and formation of heavy metal pollution at a smelting site, J. Environ. Sci., 127, 552–563 (2023).

https://doi.org/10.1016/j.jes.2022.06.026

Zhang, M., Chen, G., Luo, Z., Sun, X. and Xu, J., Spatial distribution, source identification, and risk assessment of heavy metals in seawater and sediments from Meishan Bay, Zhejiang coast, China. Mar. Pollut. Bull., 156, 111217 (2020).

https://doi.org/10.1016/j.marpolbul.2020.111217

Zhou, Q., Wang, S., Liu, J., Hu, X., Liu, Y., He, Y., He, X. and Wu, X., Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems, Geosci. Front., 15(3), 101427 (2022).

https://doi.org/10.1016/j.gsf.2022.101427

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS