Open Access

Biosynthesis of Zinc Oxide Nanoparticles using Cleome gynandra Extract and Evaluation of its Cytotoxic Activities on A549 Cell Line

V. Velmani, PG & Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, TN, India M. Balaji , PG & Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, TN, India P. Rajesh, gacchemistryrajesh@gmail.com
PG & Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, TN, India
G. T. Parethe, PG & Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, TN, India S. Kavica PG & Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, TN, India


J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 162-171

https://doi.org/10.13074/jent.2024.03.241523

PDF


Abstract

Zinc oxide nanoparticles (ZnONPs) were green synthesised by a simple, rapid, eco-friendly and a cheaper method using Cleome gynandra plant extract. The ZnONPs were characterized using UV- Visible Spectroscopy, FT-IR, XRD, FE-SEM and EDX analysis. The formation of ZnONPs (355 nm) was confirmed by UV visible spectroscopy. The crystalline nature of the nanoparticles was studied by XRD. The presence of different functional groups in the biomolecules was evident from FT-IR spectrum. The morphology of ZnONPs was analysed using SEM and the presence of zinc oxide was confirmed through elemental analysis. They were also analyzed for their biological and antioxidant activities. The green synthesized ZnONPs exhibited a good antibacterial activity against both Gram-negative and Gram-positive bacteria. Furthermore, they exhibited appreciable anticancer activity on the lung (A549) cancer cell lines.

Full Text

Reference


Acharya, K., Samui, K, Rai, M., Antioxidant and nitric oxide synthetase activation properties of Auricularia auricular, Ind. J. Exp. Biol., 42, 538-540 (2004).

Awwad, A. M., Albiss, B. and Ahmad, A. L., Green Synthesis, Characterization And Optical Properties Of Zinc Oxide Nanosheets Using Olea Europea Leaf Extract, Adv. Mater. Lett., 5(9), 520-524 (2014).

https://doi.org/10.5185/amlett.2014.5575

Baskic, D., Popovic, S., Ristic, P., Arsenijevic, N. N., Analysis of cyclohexamide-inducedapoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidiumiodideversusacridin orange/ethidium bromide, Cell Biol. Int., 30, 924-932 (2006).

https://doi.org/10.1016/j.cellbi.2006.06.016

Berridge, M. V., Herst, P. M. and Tan, A.S., Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction, Biotechnol. Annu. Rev., 11, 127–152 (2005).

https://doi.org/10.1016/s1387-2656(05)11004-7

Bhumi, G. and Savithramma, N., Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity, Int. J. Drug Dev. Res., 6(1), 208-214 (2014).

Chatterjee, A., Pakrashi, S. C., The Treatise on Indian Medicinal Plants, Publications & Information Directorate, New Delhi, 157-158 (1991).

Chweya, J. A., Mnzava, N. A., Cats whiskers, Cleome gynandra L: Promoting the conservation and use of underutilized and neglected crops, Inst. Plant Genetics Crop Plant Res. Gaterleben/IPGRI, Rome, Italy (1997).

Darroudi, M., Sabouri, Z., Oskuee, R.K., Zak, A. K., Kargar, H. and Abd, H. M. H. N., Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects, Ceram. Int., 40(3), 4827-4831 (2014).

https://doi.org/10.1016/j.ceramint.2013.09.032

Das, J., Choi, Y. J., Han, J., Abu, M. M., Reza, T., Kim, J. H., Nanoceria-mediated delivery of doxorubicin enhances the anti-tumour efficiency in ovarian cancer cells via apoptosis, Sci. Rep., 7, 1-12 (2017).

https://doi.org/10.1038/s41598-017-09876-w

Eva, S. B., Maria, H. T., Attila H., Csilla, R. and Ilona, S. V., Antioxidant effect of various rosemary (Rosmarinus officinalis L.) clones, Acta Biologica Szegediensis, 47(1), 111-113, (2003).

Fan, F., Feng, Y., Tang, P., Chen, A., Luo, R. and Li, D., Synthesis and Gas Sensing Performance of Dandelion-Like ZnO with Hierarchical Porous Structure, Ind. Eng. Chem. Res., 53(32), 12737–12743 (2014).

https://doi.org/10.1021/ie501825t

George, B., Kumar, N., Abrahamse, H. and Ray, S., Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells, Sci. Rep., 8(1), 1-14 (2018).

https://doi.org/10.1038/s41598-018-32480-5

Gunalan, S., Sivaraj, R. and Rajendran, V., Green synthesized ZnO nanoparticles against bacterial and fungal pathogens, Progr. Nat. Sci.: Mater. Int., 22(6), 693-700 (2012).

https://doi.org/10.1016/j.pnsc.2012.11.015

Jamdagni, P., Khatri, P. and Rana, J., Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity, J. King Saud. Univ. Agric. Sci., 30(2), 168-175 (2018).

https://doi.org/10.1016/j.jksus.2016.10.002

Kanipandian, N., Li, D. and Kannan, S., Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity, Biotechnol. Rep., 23, e00339–e00353 (2019).

https://doi.org/10.1016/j.btre.2019.e00339

Li, G. Y., Jiang, Y. R., Huang, K., Ding, P. and Chen, J., Preparation and properties of magnetic Fe3O4–chitosan nanoparticles, J. Alloys Compd., 466(1), 451-456 (2008).

https://doi.org/10.1016/j.jallcom.2007.11.100

Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S. and Vaidya, B., Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications, Drug Discovery Today, 22(12), 1825–1834 (2017).

https://doi.org/10.1016/j.drudis.2017.08.006

Mittal, S. and Pandey, A., Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis, Biomed. Res. Int., 2014, 1-15 (2014).

https://doi. org/10.1155/2014/891934

Mohammadian, M., Eshaghi, Z. and Hooshmand, S., Green and chemical synthesis of zinc oxide nanoparticles and size evaluation by UV–vis spectroscopy, J. Nanomed. Res., 7(1), 1-7 (2018).

Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to Proliferation and cytotoxicity assays, J. Immunol. Methods, 65(1), 55-63 (1983).

https://doi.org/10.1016/0022-1759(83)90303-4

Mubayi, A., Chatterji, S., Rai, P. K. and Watal, G., Evidence Based Green Synthesis of Nanoparticles, Adv. Mater. Lett., 3(6), 519-525 (2012).

https://doi.org/10.5185/amlett.2012.icnano.353

Muthuvel, A., Jothibas, M. and Manoharan, C., Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity, J. Environ. Chem. Eng., 8(2), 103705 (2020).

https://doi.org/10.1016/j.jece.2020.103705

Nithya, K. and Kalyanasundharam, S., Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activity, Open Nano, 4, 100024 (2019).

https://doi.org/10.1016/j.onano.2018.10.001

Nourmohammadi, E., Khoshdel, S. H., Nedaeinia, R., Sadeghnia, H. R., Hasanzadeh, L., Darroudi, M. and Kazemi, O. R., Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fbrosarcoma cell line, J. Cell. Physiol., 234(4), 4987–4996 (2019).

https://doi.org/10.1002/jcp.27303

Osonga, F. J., Akgul, A., Yazgan, I., Akgul, A., Eshun, G. B., Sakhaeeand, L., Sadik, O. A., Molecules, 25(11), 1-19 (2020).

https://doi.org/10.3390/molecules25112682

Reddy, A. J., Kokila, M. K., Nagabhushana, H., Rao, J. L., Shivakumara, C., Nagabhushana, B. M. and Chakradhar, R. P. S., Combustion synthesis, characterization and Raman studies of ZnO nanopowders, Spectrochim. Acta A Mol. Spectrosc., 81(1), 53-58 (2011).

https://doi.org/10.1016/j.saa.2011.05.043

Santhoshkumar, J., Kumar S. V. and Rajeshkumar, S., Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen, Resour.-Effic. Technol., 34(), 459-465 (2017).

https://doi.org/10.1016/j.reffit.2017.05.001

Sun, H., Jia, J., Jiang, C. and Zhai, S., Gold nanoparticle-induced cell death and potential applications in nanomedicine, Int. J. Mol. Sci., 19, 754–774 (2018).

https://doi.org/10.3390/ijms19030754

Tas, A. C., Chemical Preparation of the Binary Compounds in the Calcia-Alumina System by Self-Propagating Combustion Synthesis, J. Am. Ceram. Soc., 81, 2853-2863 (1998).

https://doi.org/10.1111/j.1151-2916.1998.tb02706.x

Van, D., Heever E, Venter, S. L., Nutritional and medicinal properties of Cleome gynandra, Acta Hortic., 752, 127–130 (2007).

https://doi.org/10.17660/ActaHortic.2007.752.17

Yong, G., Gu, F., Han, D., Wang, Z. and Guo, G., Biomimetic Synthesis of Zinc Oxide 3D Architectures with Gelatin as Matrix, J. Nanomater., 2010, 1-7 (2010).

https://doi.org/10.1155/2010/289173

Yuvakkumar, R., Suresh, J., Saravanakumar, B., Nathanael, A. J., Hong S. I. and V. Rajendran, Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications, Spectrochim. Acta, Part A, 137, 250-258 (2015).

https://doi.org/10.1016/j.saa.2014.08.022

Zhai, H. J., Wu, W. H., Lu, F., Wang, H. S. and Wang, C., Effects of ammonia and cetyltrimethylammonium bromide (CTAB) on morphologies of ZnO nano- and micromaterials under solvothermal process, Mater. Chem. Phys., 112(3), 1024–1028 (2008).

https://doi.org/10.1016/j.matchemphys.2008.07.020

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS