Open Access

Green Synthesis of Barium Sulphate Nanostructures Using Azadirachta indica Leaf Extract

S. Saravanan, shasa86@gmail.com
Department of Physics (S&H), Swarnandhra College of Engineering and Technology (A), Seetharampuram, Narsapur, West Godavari, AP, India
B. Ananda Kumar, Department of Chemistry, Sri YN College (A), Narsapur, West Godavari, AP, India S. B. Ronald, Department of Chemistry, Sri YN College (A), Narsapur, West Godavari, AP, India Ch. Udaya Bhaskara Rao Department of Chemistry, Sri YN College (A), Narsapur, West Godavari, AP, India


J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 92-96

https://doi.org/10.13074/jent.2024.03.241511

PDF


Abstract

Green synthesis of nanostructures is a growing technology owing to its potential applications in various fields. The method is feasible, simple and non-toxic; it is a low-cost strategy. It meets the standards of green chemistry, high crystalline nature and morphological structures. In this work, green synthesis of barium sulphate nanostructure was carried out by using Azadirachta indica (neem) leaf extract, barium chloride dehydrates and anhydrous sodium sulphate as source materials, by co-precipitation method. The as-synthesized barium sulphate nanostructures were subjected to different characterization techniques for their structural, functional, morphological and elemental studies by using XRD, FTIR, SEM and EDX. XRD reveals the orthorhombic crystal phase with a sharp diffraction peaks phase. SEM studies revealed the rice grain-like structures with an average diameter of 71.36 nm. Furthermore, a better understanding of this biological phenomenon may provide new insights for enhancing nanomaterial usage in the future.

Full Text

Reference


Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T. F. and Weiner, S., Addadi, L., Biological control of crystal texture: A widespread strategy for adapting crystal properties to function, Sci., 259(5096), 776-779 (1993).

http://dx.doi.org/10.1126/science.259.5096.776

Gupta, A., Singh, P., Shivakumara, C., Synthesis of BaSO4 nanoparticles by precipitation-by-precipitation method using sodium hexa metaphosphate as a stabilizer, Solid State Communications, 150, 386-388 (2010).

https://doi.org/10.1016/j.ssc.2009.11.039

Huston, M., DeBella, M., DeBella, M. and Gupta, A., Green synthesis of nanomaterials, Nanomater., 11(8), 2130 (2021).

https://doi.org/10.3390/nano11082130

Jagannath, K. V. and Manjunath, K., Solution combustion synthesis of porous β-BaSO4 nanopowder using benzenesulfonyl methyl imidazolium chloride as dfuel and sulfonating agent, Mater. Res. Express, 6(9), 1-8 (2019).

https://doi.org/10.1088/2053-1591/ab3328

Long, C., Wang, J., Wang, H., Zheng, Y., Qi, Z., Chang, G. S., Xu, L. R., Wu, T., Xu, W., Green synthesis of Barium sulphate particles using plant extracts, MATEC Web of Conference, 67, 1-7 (2016).

http://dx.doi.org/10.1051/matecconf/20166702017

Meagher, M. J., Leone, B., Turnbull, T. L., Ross, R. D. and Zhang, Z., Roeder, R.K., Dextran-encapsulated barium dulfate nanoparticles prepared for aqueous dispersion as an X-ray contrast agent, J. Nanopart. Res., 15, 1-10 (2013).

https://doi.org/10.1007/s11051-013-2146-8

Meenakshi, J., Ansari, S. and Shimpi, N. G., Novel sonochemical green approach for the synthesis of highly crystalline and thermally stable barium sulphate nanoparticles using Azadirachta indica leaf extract, Bull. Mater. Sci., 42(22), 1-9 (2019).

https://doi.org/10.1007/s12034-018-1724-x

Nagajyothi, P. C., Pandurangan, M., Sreekanth T. V. M. and Shi, J., In vitro anticancer potential of BaCo3 nanoparticles synthesized via green route, J. Photochem. Photobiol., B, 156, 29-34 (2016).

https://doi.org/10.1016/j.jphotobiol.2016.01.008

Patel, C. M., Chakraborty, M. and Murthy, Z. V. P., Study on the stability and microstructural properties of barium sulphate nanoparticles produced by nanomilling, Advanced Powder Technology, 25(1), 226-235 (2014).

https://doi.org/10.1016/j.apt.2013.04.003

Pawar, A. A., Sahoo, J., Verma, A., Alswieleh, A. M., Lodh, A., Rajesh, R., Lakkakula, J., Byong-Hun, J., Rabiul, I., Md., Azadirachta indica-derived silver nanoparticles synthesis and its antimicrobial applications, Journal of Nanomaterials, 2022, 1-15 (2022).

https://doi.org/10.1155/2022/4251229

Prameena, B., Anbalagan, G., Sangeetha, V., Gunasekaran, S., Ramkumar, G. R., Behaviour of Indian natural baryte mineral, Int. J. Chem. Tech. Res., 5(1), 220–231 (2013).

Saravanan, S., Functional, structural and morphological property of green synthesized silver nanoparticles using Azadirachta indica leaf extract, Mater. Today Proc., 47(9), 1815-1818 (2021).

https://doi.org/10.1016/j.matpr.2021.03.227

Saravanan, S., Sivanandan, T. and Ramalingam, G., Optical, thermal and magnetic properties of strontium ferrite nanoparticles, Int. J. Nanosci. Nanotechnol., 18(4), 275-284 (2022).

https://doi.org/10.22034/ijnn.2022.697998

Sifontes, A. B., Canizales, E., Toro, M. J., Avila, E., Hernandez, P., Delgado, B. A., Brenda, Gutierrrez, G., Diaz, Y., Cruz-Barrios, E., Obtaining highly crystalline barium sulphate nanoparticles via chemical precipitation and quenching in absence of polymer stabilizers, J. Nanomater., 2015, 1-8 (2015).

http://dx.doi.org/10.1155/2015/510376

Sifontes, A. B., Canizales, E., Toro-Mendoza, J., Avila, E., Hernandez, P., Delgado, B. A., Brenda, G. G. and Cruz-Barrios, E., Obtaining highly crystalline barium sulphate nanoparticles vi chemical precipitation and quenching in absence of polymer stabilizers, J. Nanomater., 2015, 1-8 (2015).

http://doi.org/10.1155/2015/510376

Sivanandan, T. and Saravanan, S., Effects of calcination temperatures on structural, functional, morphological, and magnetic properties of strontium ferrite (SrFe2O4) nanoparticles, Kuwait J. Sci., 50(3), 271-275 (2023).

https://doi.org/10.1016/j.kjs.2023.01.011

Contact Us

Powered by

Powered by OJS