Open Access

Bioremediation of Kraft Lignin in Wastewater: Optimization of Temperature and Isolation of Valuable Compounds

C. Swati, Department of Chemical Engineering, National Institute of Technology, Raipur, CG, India J. Anandkumar anandj.che@nitrr.ac.in
Department of Chemical Engineering, National Institute of Technology, Raipur, CG, India


J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 140-149

https://doi.org/10.13074/jent.2024.03.241520

PDF


Abstract

Conventional methods for the treatment of complex lignin found in the pulp and paper mill effluent is a strenuous and expensive process. Microbial degradation is a promising technique to degrade lignin efficiently due to its adaptability and rapid growth of microbes in diverse environments. This study is focused on the isolation of potential ligninolytic bacterial strains from agricultural soil and decomposed wood sources for successful degradation of lignin present in the wastewater. Initially, 15 ligninolytic strains were identified and three dominant species, Staphylococcus lentus (SB5), Bacillus megaterium (RWB15) and Pseudomonas geniculata (RWP9) were isolated as per their growth tolerance pattern with different lignin concentrations. The lignin degradation study was carried out at different temperatures (25-45℃) with 1000 mg/l of feed lignin concentrations. The optimum degradation temperature of all the strains fell within the range 30-35℃. The maximum lignin degradation of SB5, RWB15 and RWP9 was identified as 89, 77 and 90% at the end of the 6th, 3rd and 7th day of biodegradation, respectively. There was a steep reduction of COD by all three microbes before attaining the stationary phase and thereafter COD reduction was sluggish due to the death phase. Besides, the microbes used in this study showed the transformation of lignin into valuable low-molecular by-products, vanillin, vanillic acid and adipic acid with their concentration being quantified as 28, 101 and 130 mg/l, respectively. This study shows the successful degradation of waste lignin and the recovery of valuable byproducts from waste streams.

Full Text

Reference


Ahmad, M., Roberts, J. N., Hardiman, E. M., Singh, R., Eltis, L. D. and Bugg, T. D., Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase, Biochem., 50(23), 5096-5107 (2011).

https://doi.org/10.1021/bi101892z

Asina, F. N. U., Brzonova, I., Kozliak, E., Kubátová, A. and Ji, Y., Microbial treatment of industrial lignin: Successes, problems and challenges, Renewable Sustainable Energy Rev., 77, 1179-1205 (2017).

https://doi.org/10.1016/j.rser.2017.03.098

Blasi, A., Verardi, A., Lopresto, C. G., Siciliano, S. and Sangiorgio, P., Lignocellulosic agricultural waste valorization to obtain valuable products: An overview, Recycl., 8(4), 61 (2023).

https://doi.org/10.3390/recycling8040061

Bruijnincx, P. C., Rinaldi, R. and Weckhuysen, B. M., Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials, Green Chem., 17(11) (2015).

https://doi.org/4860-4861.10.1039/C5GC90055G

Bugg, T. D., Ahmad, M., Hardiman, E. M. and Singh, R., The emerging role for bacteria in lignin degradation and bio-product formation, Curr. Opin. Biotechnol., 22(3), 394-400 (2011).

https://doi.org/10.1016/j.copbio.2010.10.009

Chandra, R., Raj, A., Purohit, H. J. and Kapley, A., Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste, Chemosphere, 67(4), 839-846 (2007).

https://doi.org/10.1016/j.chemosphere.2006.10.011

Chandra, R., Yadav, S. and Yadav, S., Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry, Ecol. Eng., 98, 134-145 (2017).

https://doi.org/10.1016/j.ecoleng.2016.10.017

Grgas, D., Rukavina, M., Bešlo, D., Štefanac, T., Crnek, V., Šikić, T. and Landeka Dragičević, T., The Bacterial Degradation of Lignin - A Review, Water, 15(7), 1272 (2023).

https://doi.org/10.3390/w15071272

Haq, I. U., Qaisar, K., Nawaz, A., Akram, F., Mukhtar, H., Xu, Y. and Choong, T. S. Y., Advances in valorization of lignocellulosic biomass towards energy generation, Catal., 11(3), 1-25 (2021).

https://doi.org/10.3390/catal11030309

Haq, I., Mazumder, P. and Kalamdhad, A. S., Recent advances in removal of lignin from paper industry wastewater and its industrial applications–A review, Bioresource Technol., 312, 123636 (2020).

https://doi.org/10.1016/j.biortech.2020.123636

Hasan, F., Shah, A. A. and Hameed, A., Industrial applications of microbial lipases, Enzyme Microb. Technol., 39(2), 235-251 (2006).

https://doi.org/10.1016/j.enzmictec.2005.10.016

Hermosilla, E., Schalchli, H., Mutis, A. and Diez, M. C., Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum, Environ. Sci. Pollut. Res. 24, 21984–21996 (2017).

https://doi.org/10.1007/s11356-017-9841-4

Hofrichter, M., Ullrich, R., Pecyna, M. J., Liers, C. and Lundell, T., New and classic families of secreted fungal heme peroxidases, Appl. Microbiol. Biotechnol., 87, 871-897 (2010).

https://doi.org/10.1007/s00253-010-2633-0

Imam, A., Suman, S. K., Kanaujia, P. K. and Ry, A., Biological machinery for polycyclic aromatic hydrocarbons degradation: A review, Bioresour. Technol., 343, 126121 (2022).

https://doi.org/10.1016/j.biortech.2021.126121

Khan, S. I., Zarin, A., Ahmed, S., Hasan, F., Belduz, A. O., Çanakçi, S. and Shah, A. A, Degradation of lignin by Bacillus altitudinis SL7 isolated from pulp and paper mill effluent, Water Sci. Technol., 85(1), 420-432 (2022).

https://doi.org/10.2166/wst.2021.610

Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas‐Wasilewska, M., Matuszewska, A., and Rogalski, J., Fungal laccase: properties and activity on lignin, J. Basic Microbiol., 41(3‐4), 185-227 (2001).

https://doi.org/10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-T

Lin, L., Cheng, Y., Pu, Y., Sun, S., Li, X., Jin, M. and Yuan, J. S., Systems biology-guided biodesign of consolidated lignin conversion, Green Chem., 18(20), 5536-5547 (2016).

https://doi.org/10.1039/C6GC01131D

Masai, E., Katayama, Y. and Fukuda, M., Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds, Biosci. Biotechnol. Biochem., 71(1), 1-15 (2007).

https://doi.org/10.1271/bbb.60437

Mathews, S. L., Grunden, A. M. and Pawlak, J., Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus, Int. Biodeterior. Biodegrad, 110, 79-86 (2016).

https://doi.org/10.1016/j.ibiod.2016.02.012

Mei, J., Shen, X., Gang, L., Xu, H., Wu, F. and Sheng, L., A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently, Bioresour. Technol., 310, 123445 (2020).

https://doi.org/10.1016/j.biortech.2020.123445

Nguyen, L. T., Phan, D. P., Sarwar, A., Tran, M. H., Lee, O. K. and Lee, E. Y., Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion, Ind. Crops Prod., 161, 113219 (2021).

https://doi.org/10.1016/j.indcrop.2020.113219

Ramachandra, M., Crawford, D. L., and Hertel, G., Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus, Appl. Environ. Microbiol., 54(12), 3057-3063 (1988).

https://doi.org/10.1128/aem.54.12.3057-3063.1988

Singh, A. K., Bilal, M., Iqbal, H. M., Meyer, A. S. and Raj, A., Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges, Scien of Total Environ., 777, 145988 (2021).

https://doi.org/10.1016/j.scitotenv.2021.145988

Vardon, D. R., Franden, M. A., Johnson, C. W., Karp, E. M., Guarnieri, M. T., Linger, J. G. and Beckham, G. T., Adipic acid production from lignin, Energy Environ. Sci., 8(2), 617-628 (2015).

https://doi.org/10.1039/C4EE03230F

Vijayalakshmi, S., Disalva, X., Srivastava, C., and Arun, A., Vanilla-natural vs artificial: a review, Res. J. Pharm. Technol., 12(6), 3068-3072 (2019).

https://doi.org/10.5958/0974-360X.2019.00520.1

Wong, D. W., Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol, 157, 174-209 (2009).

https://doi.org/10.1007/s12010-008-8279-z

Xu, Z., Qin, L., Cai, M., Hua, W. and Jin, M., Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains, Environ. Sci. Pollut. Res., 25, 14171-14181 (2018).

https://doi.org/10.1007/s11356-018-1633-y

Zimmermann, W., Degradation of lignin by bacteria, J. Biotechnol., 13(2-3), 119-130 (1990).

https://doi.org/10.1016/0168-1656(90)90098-V

Zuo, K., Li, H., Chen, J., Ran, Q., Huang, M., Cui, X. and Jiang, Z. Effective biotransformation of variety of guaiacyl lignin monomers into vanillin by Bacillus pumilus, Frontiers Microbiol., 13, 901690 (2022).

https://doi.org/10.3389/fmicb.2022.901690

Contact Us

Powered by

Powered by OJS