Open Access

Modelling Scenario in Nanotechnology Today

Haresh M. Pandya haresh.pandya@rediffmail.com
Department of Physics, Chikkanna Government Arts College, Tirupur, Tamilnadu, India.


J. Environ. Nanotechnol., Volume 1, No 1 (2012) pp. 01-04

https://doi.org/10.13074/jent.2012.10.121020

PDF


Abstract

This paper focuses on the current scenario of Nanotechnology vis-a-vis the latest progress and developements in the field in the last decade from a modelling and computational viewpoint. The importance of incorporating better and faster modelling and simulation tools not only in the multiscale context but also from a predctive point of view for future technological discoveries and innovations is also discussed. Challenges in this arena and priorities for the next decade are also discussed.

Full Text

Reference


Cao, Q., Kim, H.S., Kim, N., Pimparkar, N., Kulkarni,J. P., Wang, C., Shim, M., Roy, K., Alam, M.A., and Rogers, J., Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates. Nature 454:495-500 2008.

http://dx.doi.org/10.1038/nature07110

Cao, Q., Rogers, J., Alam, M.A., and Pimparkar, N., Theory and practice of ‘striping’ for improved on/off ration in carbon nanotube thin film transistors. Nano Res. 2(2):167-175 2009.

http://dx.doi.org/10.1007/s12274-009-9013-z

Datta, S., Quantum transport: Atom to transistor. Cambridge, U.K.: Cambridge University Press. 2005. Drexler, K. E. “Engines of Creation: The Coming Era of Nanotechnology”, Anchor, New York, 1986.

Heinze, S., J., Tersoff, R., Martel, V., Dercycke, J., Appenzeller, and Avouris, P. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89:106801,

http://dx.doi:10.1103/PhysRevLett 89.106801 2002.

Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H.. Ballistic carbon nanotube field-effect transistors. Nature 424;654-657. 2003.

http://dx.doi.org/10.1038/nature01797

Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H., Iron-based layered superconductor La[O1- xFx]FeAs(x=0.05-0.120 with Tc=26K. J. Am. Chem. Soc. 130:3296-3297,

http://dx.doi:1021/ja800073m 2008.

Li, Z., Chen, Y., Li, X., Kamins, T.I., Nauka, K., andWilliams, R.S., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4:245- 247, doi:10.1021/nl034958e. 2004.

http://dx.doi.org/10.1021/nl034958e

Li, Z., Rajendran, B., Kamins, T.I., Li, X., Chen, Y., andWilliams, R.S.. Silicon nanowires for sequencespecific DNA sensing: Device fabrication and simulation. Appl. Phys. A Mater. Sci. Process 80:1257 (2005).

http://dx.doi.org/10.1007/s00339-004-3157-1

Lundstrom, M., and Ren, Z.. Essential physics of carriertransport in nanoscale MOSFETs. IEEE Trans. Electron. Dev. 49:133-141. 2002.

Maier, T.A., Poilblanc, D., and Scalapino D.J., Dynamics of the pairing interaction in the Hubbard and t-J models of high-temperature superconductors. Phys. Rev. Lett. 100:237001,

http://dx.doi:10.1103/PhysRevLett. 100.237001. 2008.

Nair, P.R. and Alam, M.A. Performance limits of nanobiosensors. Appl. Phys. Lett. 88:233120 2006.

http://dx.doi.org/10.1063/1.2211310

Nair, P.R. and Alam, M.A.. 2007. Dimensionally frustrated diffusion towards fractal absorbers. Phys. Rev. Lett. 99:256101.

http://dx.doi.10.1103/PhysRevLett. 99.256101.

Contact Us

Powered by

Powered by OJS