Open Access

Surface Acoustic Wave Devices and Sensors - A Short Review On Design and Modelling by Impulse Response

Haresh M. Pandya, haresh.pandya@rediffmail.com
Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamil Nadu, India
T. Venkatesan Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamil Nadu, India


J. Environ. Nanotechnol., Volume 2, No 3 (2013) pp. 81-90

https://doi.org/10.13074/jent.2013.09.132034

PDF


Abstract

A Surface Acoustic Wave (SAW) is a wave propagating along the surface of an elastic substrate with an amplitude that typically decays exponentially with depth into the substrate. To generate SAWs, an Interdigital Transducer (IDT) is used which can also act as a source or receiver of SAW. The present paper attempts to review the latest research work done in the last twenty years in design and computational modelling of such devices. Of the many computational models available, the Impulse Response model is selected, adopted and MATLAB is employed as a modelling tool for the simulation of the SAW device. Modelling results of a SAW delay line device functioning at a center frequency of 400 MHz with 25 finger pairs are studied and presented.

Full Text

Reference


Andrew J., Slobodnik, Thomas L., Szabo and Kenneth R., Laker, Miniature Surface Acoustic wave Filter, Proceedings of the IEEE, vol. 67, No.1 (1979).

Budreau, A.J., and Carr, P.H., Temperature Dependence of the Attenuation of Microwave Frequency Elastic Surface Waves in Quartz, J. Appl. Phys., vol. 18, pp.239 -241 (1971).

Campbell, C.K., Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, San Diego, CA (1998).

Campbell, J.J., and Jones, W.R., "A Method for Estimating Optimal Crystal Cuts and Propagation Directions for Excitation of Piezoelectric Surface Waves", IEEE Trans. on Sonics and Ultrasonics, vol. SU-15, pp.1223-1231 (1968).

Carl M., Panasik and Bill J., Hunsinger, Precise Impulse Response Measurement of SAW filters, IEEE transactions on sonics and ultrasonics, vol. Su-23, no. 4 (1976).

Clinton S., Hartmann, Delamar T., Bell, JR., and Ronald C., Rosenfeld, Impulse Model Design of Acoustic Surface-Wave Filters, IEEE transactions on microwave theory and techniques, Vol. MTT-21, No.4 (1973).

David Morgan, Surface Acoustic Wave Filters with Applications to Electronic Communications and Signal Processing, Elsevier, UK (2007)

Drafts, B., Acoustic wave technology sensors, IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp. 795-802 (2001).

http://dx.doi.org/10.1109/22.915466

Engan, H. Surface acoustic wave multielectrode transducers, IEEE Trans. Sonicsand Ultrasonics, Vol. SU-22, pp. 395-401 (1975).

Feldmann, M., and Henaff, J. Surface Acoustic Waves for Signal Processing, Maryland. Artech House (1989).

Gerard, H.M., Acoustic scattering parameters of the electrically loaded Interdigital surface wave transducer, IEEE Trans. Microwave Theory & Techniques, MIT-17, 1045-1046 (1969).http://dx.doi.org/10.1109/TMTT.1969.1127095

Haresh M., Pandya, Design and Modelling of Surface Acoustic Wave (SAW) Devices and Sensors, Ph.D. Thesis, Bharathiar University, Coimbatore, Jan-2010, pp. 8 (2010).

Haresh M., Pandya, Modelling Scenario in Nanotechnology Today, J. Environ. Nanotechnol., Vol. 1, Issue 1, pp. 1-4, (2012).

http://dx.doi.org/10.13074/jent.2012.10.121020

Haresh M., Pandya, Kumar, P.R., Nimal A.T., Sharma, M.U., Equivalent Circuit MATLAB Modelling of a Surface Acoustic Wave (SAW) Delay Line for Sensor Applications, Research journal of Chemistry and Environment, pp. 90 (2011).

Haresh M., Pandya, Rajesh, K.B., Nimal, A.T., Sharma, M.U., Impulse Modelled Response of a 300 MHz ST-Quartz SAW Device For Sensor Specific Applications, J. Environ. Nanotechnol., Vol. 2, pp. 15-21 (2013).

http://dx.doi.org/10.13074/jent.2013.02.nciset33

Haresh M., Pandya, Sharma, M.U., Nimal, A.T., Kaul, S.K., Dinesh, Simulation and Design of Surface Acoustic Wave Delay Line for Chemical Sensor Application, International Journal of Applied Engineering Research, Vol.6 Issue.5 pp. 903-906 (2011).

Hartmann, C.S., Bell, D.T., Jr., and Rosenfeld, R.C., Impulse model design of acoustic surface-wave filters, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-21, pp. 162-75, (1973).

http://dx.doi.org/10.1109/TMTT.1973.1127967

Hartmann, C.S., Jr. Bell, D. T. Rosenfeld, R.C., Impulse Model Design of Acoustic Surface-Wave Filters, Microwave Theory and Techniques, IEEE Transactions on, Vol. 21, Issue 4, pp. 162– 175(1973).

Hellwege, K.H., and Hellwege, A.M., ed., Group III: Crystal and Solid State Physics, Landolt-Bornstein New Series, Vol. 2, pp. 40-97, Springer-Verlag, Berlin (1969).

Hines, J. H., Malocha, D.C., and Brown, R.B., SAW Device Impulse Response Modeling using Broadband Diffraction Theory, IEEE, Ultrasonics Symposium (1989).

Hiromi Yatsuda, and Kazuhiko Yamanouchi, Automatic Computer-Aided Design of Slanted Finger SAW Filters Using a Building-Block Method, IEEE Ultrasonics Symposium (1998).

Hirst, E.R., Xu, W.L., Bronlund, J.E., and Yuan, Y.J., Surface Acoustic Wave Delay Line for Biosensor Application, Mechatronics and Machine Vision in Practice (M2VIP08), 2-4 (2008).

Junjing Zhou, Chunmin Tao, Chenbo Yin, Analysis of Different Effect on the Response of SAW Hydrogen Gas Sensor, IEEE on Nano/Micro Engineered and Molecular Systems, 6-9 (2008).

Ken-Ya Hashimoto, Masatsune Yamaguchi, and Hiroshi Kogo, Frequency Response Measurement for SAW Devices Based on Fourier Analysis of Impulse Response, IEEE Transactions on Sonics and Ultrasonics, Vol. SU-32, No. I (1985).

Kushibiki, J., Sannomiya, T., and Chubachi, N., A useful acoustic measurement system for pulse mode in VHF and UHF ranges, IEEE Trans. Sonics Ultkason., vol. SU-29, no. 6. pp. 338-342 (1982).http://dx.doi.org/10.1109/T-SU.1982.31364

Langecker, K., and Veith, R., Automated time domain testing of SAW devices, in Proc. lEEE Ultrason. Symp., pp. 396-399 (1980).

Leonhard M., Reindl, and Ismail M., Shrena, Wireless Measurement of Temperature Using Surface Acoustic Waves Sensors, IEEE transactions on ultrasonic, ferroelectrics, and frequency control, Vol. 51, no. 11 (2004).

Malocha, D.C., Surface acoustic wave design fundamentals, Proc. of 6th International Microwave Conference (MIKON 96), Warsaw, Poland (1996).

McClellan, J. H., Parks, T.W., and Rabiner, L.R., A computer Droerarnme for desienine outimum FIR linear Dhase digital filters, IEEE Trans. Audio Electroacoust., Vol. AU-21; pp. 506-526 (1973).

http://dx.doi.org/10.1109/TAU.1973.1162525

Mohammadi, S., Eftekhar, A.A., Khelif, A., Hunt, W.D., and Adibi, A., High-Q micromechanical resonators in a two-dimensional phononic crystal slab, Applied Physics Letters, 94, 1 (2009).

http://dx.doi.org/10.1063/1.3078284

Mohammadi, S., Eftekhar, A.A., Khelif, A., Moubchir, H., Westafer, R., Hunt, W.D., and Adibi, A., Complete phononic bandgaps and bandgap maps in two- dimensional silicon phononic crystal plates, Electronics Letters, 43, 16 (2007).

http://dx.doi.org/10.1049/el:20071159

Monir H., El-Diwany and Campbell, C.K., Modification of Optimum Impulse Response Techniques for Application to SAW Filter Design, IEEE Transactions on sonics and ultrasonics, Vol. SU-24, No. 4 (1977).

Morgan, D.P., Surface Wave Devices for Signal Processing, Elsevier, Amsterdam (1991).

Nomura, T., Tekebayashi, M., Saitoh, A., Chemical sensor based on surface acoustic resonator using Langmuir- Blodgett film, IEEE Transactions on Ultrasonics, Ferroelectronics, and Frequency Control, 45, 1261–1265 (1998).

http://dx.doi.org/10.1109/58.726452

Penza, M., Antolini, F., Antisari, M.V., Carbon nanotubes as SAW chemical sensor materials", Sensors and Actuators B 100, 47-59 (2004).

http://dx.doi.org/10.1016/j.snb.2003.12.019

Penza, M.,Tagliente, M.A., Aversa, P., Cassano, G., Organic vapor detection using carbon nanotube composites microacoustic sensors, Chemical Physical Letters 409, 349-354(2005).

http://dx.doi.org/10.1016/j.cplett.2005.05.005

Rao, Y.L., Zhang, G., 3-D Finite Element Simulation of Nanostructure Enhanced SAW Sensors, COMSOL Users Conference, Boston, USA (2006)

Reindl, L., Shrena, I., Kenshil, S., Peter, R., Wireless Measurement of Temperature Using Surface Acoustic Waves Sensors, Proc. IEEE International Frequency Control (2003).

Ruppel, C.C.W., Ruile, W., Scholl, G., Wagner, K.C., and Manner, O., Review of models for low-loss filter design and applications,” presented at Proceedings of IEEE Ultrasonic Symposium, New York, USA Cannes, France, pp. 313-324 (1994).

Schulz, M.B, Matsinger, J.H., Rayleigh Wave Electromechanical Coupling Constant, Appl. Phys. Lett. 20, 367 (1972).

http://dx.doi.org/10.1063/1.1654190

Shulz, M.B., and Holland, M.G., Materials for Surface Acoustic Wave Components, IEEE Conf. Publ., 109, pp. 1-10 (1973).

Slobodnik, A.J., Jr., Laker, K.R., Szabo, T.L., Kearns, W.J., and Roberts, G.A., Low sidelobe SAW filters using overlap and with- drawal weighted transducers, in Ultrason. Symp. Proc., pp. 757- 762 (1977).

Smith, P.M., Analysis techniques for surface acoustic wave devices, SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. ‘Linking to the Next Century’. Proc. New York, NY, USA Natal, Brazil (1997).

Smith, W.R., Gerard, H.M., Collins, J.H., Reeder, T.M., and Shaw, H.J., Analysis of interdigital surface wave transducers by use of an equivalent circuit model, IEEE Trans. Microwave Theory Tech. (Special Issue on Microwave Acoustics), vol. MTT.17, pp. 856–864 (1969).

http://dx.doi.org/10.1109/TMTT.1969.1127075

Szabo, T.L., and Slobodnik, A.J., Jr., Diffraction compensation in periodic apodized acoustic surface wave filters, IEEE Trans. Sonics Ultrason. Vol. 21, pp. 116-119 (1974).

http://dx.doi.org/10.1109/T-SU.1974.29800

Tancrell, R., Analytic design of surface wave bandpass filters, IEEE Trans. Sonics and Ultrasonics, vol. SU- 21, pp. 12-22 (1974).

http://dx.doi.org/10.1109/T-SU.1974.29785

Tancrell, R.H., and Holland, M.G., Acoustic surface wave filters, Proceedings of the IEEE, vol. 59, pp. 393-409 (1971).

http://dx.doi.org/10.1109/PROC.1971.8180

Tomchenko, A.A., Harmer, G.P., Marquis, B.T., Detection of chemical warfare agents using nanostructured metal oxide sensors, Sensors and Actuators B 108, 41-55 (2005).

http://dx.doi.org/10.1016/j.snb.2004.11.059

Tseng, C.C., Frequency response of an interdigital transducer for excitation of surface elastic waves, IEEE Trans. Elecbws Devices, vol. ED-15, pp. 586– 594 (1968).

Tsubouchi, K., and Mikoshiba, N.,Zero-Temperature Coefficient SAW Devices on AlN Epitaxial Films, IEEE Trans. on Sonics and Ultrasonics, SU-32, 5, pp. 634-643 (1985).

http://dx.doi.org/10.1109/T-SU.1985.31647

Varghese, O.K., Gong, D., Dreschel, W.R., Ong, K.G., Grimes, C.A., Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors, Sensors and Actuators B 94, 27-35 (2003).

http://dx.doi.org/10.1016/S0925-4005(03)00252-1

Wagg, M.W., Bulk acoustic waves in solids, D-Phil thesis, Merton College, Oxford, pp. 113-114, (1981).

Wei Luo, Qiuyun Fu, Jianling Wang, Yi Wang, and Dongxiang Zhou, Theoretical Analysis of Wireless Passive Impedance-Loaded SAW Sensors, IEEE Sensors Journal, Vol. 9, No. 12, (2009).

http://dx.doi.org/10.1109/JSEN.2009.2029812

White, R.M., Surface elastic-wave propagation and amplification, IEEE Trans. Electron Devices, vol. ED-14, pp. 181–189 (1967).

White, R.M., and Voltmer, F.W., Direct piezoelectric coupling to surface elastic waves, Applied Physics Letters, vol.7, pp-314,316 (1965)

Wilson, W.C., Atkinson, G.M., A Comparison of Surface Acoustic Wave Modeling Methods, Micro Devices to Wireless Systems, Vol. 7, Special Issue, October 2009, pp.150-159 (2009)

Yamanouchi, K., Cho, Y., and Meguro, T., SHF-range surface acoustic wave filters with inter-digital transducers using electron-beam exposure, in Pro. IEEE Ultrason. symp., (1988).

 

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS