Synthesis of One Dimentional Carbon Nano Fibers from Tire Pyrolysis Oil
J. Environ. Nanotechnol., Volume 1, No 1 (2012) pp. 46-49
Abstract
Tire pyrolysis oil derived from waste tire material has been used to synthesis carbon nanofiber on quartz substrate in Ar atmosphere by spray pyrolysis method. The structure and nature of carbon nano fiber were characterized by scanning electron microscopy, X-ray diffraction and Raman Spectroscopy. The diameters of the synthesized carbon nanofiber are 260 ± 40 nm.
Full Text
Reference
Benissad-Aissani, F., Aıt-Amar, H., Schouler, M.-C. and Gadelle, P., The role of phosphorus in the growth of vapour grown carbon fibres obtained by catalytic decomposition of hydrocarbons. Carbon. 42(11), 2163 2168 (2004).
http://dx.doi.org/10.1016/j.carbon.2004.04.020
Cunliffe, A.M & Williams, P.T., Composition of oils derived from the batch pyrolysis of tires. J Anal Appl Pyrolysis., 44, 131-152 (1998).
http://dx.doi.org/10.1016/S0165-2370(97)00085-5
Dai, H., Carbon Nanotubes: Synthesis, Integration and Properties, Acc Chem Res., 35(12), 1035-1044 (2002).
http://dx.doi.org/10.1021/ar0101640
Endoa, M., Kima, Y.A., Takedaa, T., Honga, S.H., Matusitaa, T., Hayashia, T. and Dresselhaus, M.S., Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon, 39, 2003–2010 (2001).
http://dx.doi.org/10.1016/S0008-6223(01)00019-7
Ghosh, P., Soga, T., Ghosh, K., Jimbo, T., Katoh, R., Sumiyama, K. and Ando Y., Effect of Sulfur Concentration on the Morphology of Carbon, Nanofibers Produced from a Botanical Hydrocarbon. Nanoscale Res Lett., 3, 242–248 (2008).
http://dx.doi.org/10.1007/s11671-008-9143-3
Hoque, A., Alam, M.K. and Tibbetts, G.G., Synthesis of catalyst particles in a vapor grown carbon fiber reactor, Chem Eng Sci., 56, 4233-4243 (2001).
http://dx.doi.org/10.1016/S0009-2509(01)00042-2
Kaminsky, W. and Mennerich, D., Pyrolysis of synthetic tire rubber in a fluidized-bed reactor to yield 1,3- butadiene, styrene and carbon black. J Anal Appl Pyrolysis., 803, 58-59 (2001).
Karthikeyan, S., Sathiskumar, C. and Srinivasa moorthy, R., Effect of process parameters on tire pyrolysis: a review. J Sci Ind Res., 71, 309-315 (2012).
Martin-Gullon, I., Vera, J., Conesa, J.A., González, J.L. and Merino, C., Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 44(8), 1572-1580 (2006).
http://dx.doi.org/10.1016/j.carbon.2005.12.027
Min-Sheng, Liu., Mark., Ching-Cheng Lin., I-Te, Huang and Chi-Chuan, Wang., Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transfer., 32, 1202–1210 (2005).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2005.05.005
Park, C., Anderson, P.E., Chambers, A., Tan, C.D., Hidalgo, R. and Rodriguez, N.M., Further Studies of the Interaction of Hydrogen with Graphite Nanofibers. J Phys Chem B., 103 (48), 10572–10581 (1999).
http://dx.doi.org/10.1021/jp990500i
Pradhan, D., Sharon, M., Kumar, M., Ando, Y., Nano- Octopus: A New Form of Branching Carbon Nanofiber. J Nanosci Nanotechnol, 3(3), 215-217 (2003).
http://dx.doi.org/10.1166/jnn.2003.176
Sengupta, J. Panada, S.K. and Jacob, C., Carbon nanotubes synthesis from propane decomposition on a pre-heated Ni over layer. Bull Matr Sci., 32(2), 135-140 (2009).
Sengupta, J. and Jacob, C., The effect of Fe and Ni catalysts on the growth of multiwalled carbon nanotubes using chemical vapor deposition. J Nanopart. Res., 12, 457-465 (2010).
http://dx.doi.org/10.1007/s11051-009-9667-1