Research Article

Selective Fluorescence Chemosensor for Al3+ based on Antipyrine with Furfural Attached Allyl System

P. Rajasingh sprajasingh@gmail.com
Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, India
P. Banumathi,  Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, IndiaG. Tamil Selvan,  Department of Chemistry, KITS, Coimbatore, TN, IndiaP. Mosae Selvakumar   Science and Math Program, Asian University for Women, Chittagong, Bangladesh


J. Environ. Nanotechnol., Volume 10, No. 2 (2021) pp. 01-05

https://doi.org/10.13074/jent.2021.06.212435

PDF


Abstract

By incorporating Furfural-Antipyrine as coordinate sites into the fragment of receptor FBH-AP has been used as an artificial chemosensor for selective recognition of transition metals. The strong fluorescence emission at 388 nm of the receptor FBH-AP is effectively and selectively quenched by Al3+. A 1:1 complex is formed between the FBH-AP and Al3+ is determined by jobs plot and their common interferent ions do not show any interference with the Al3+. It is anticipated that the antipyrine could be a good candidate probe and has potential application for Al3+ determination.

Full Paper

Reference


Ahmad, M., Narayanaswamy, R., Optical fibre Al(III) sensor based on solid surface fluorescence measurement, Sensors Actuators B Chem. 81(2–3), 259–266 (2002).

https://dx.doi.org/10.1016/S0925-4005(01)00961-3

Andrási, E., Páli, N., Molnár, Z., Kösel, S., Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients, J. Alzheimer’s Dis. 7(4), 273–284 (2005).

https://dx.doi.org/10.3233/JAD-2005-7402

Banumathi, P., Tamil selvan, G., Selvakumar Paulraj, M., Rajasingh, P., Synthesis of antipyrine based organic material for Zn2+ ion sensing and implication in logic gate analysis, Mater Today Proc.

https://dx.doi.org/10.1016/j.matpr.2020.07.084

Burnworth, M., Rowan, S. J., Weder, C., Fluorescent Sensors for the Detection of Chemical Warfare Agents, Chem. - A Eur. J. 13(28), 7828–7836 (2007).

https://dx.doi.org/10.1002/chem.200700720

Chebrolu, L. D., Thurakkal, S., Balaraman, H. S., Danaboyina, R., Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline–carbaldehyde chemosensor, Sensors Actuators B Chem. 204, 480–488 (2014).

https://dx.doi.org/10.1016/j.snb.2014.07.124

Cheng, X., Yu, Y., Jia, Y., Duan, L., Fluorescent PU films for detection and removal of Hg 2+ , Cr 3+ and Fe 3+ ions, Mater. Des. 95, 133–140 (2016).

https://dx.doi.org/10.1016/j.matdes.2016.01.103

Datta, B. K., Kar, C., Basu, A., Das, G., Selective fluorescence sensor for Al3+ and Pb2+ in physiological condition by a benzene based tripodal receptor, Tetrahedron Lett. 54(8), 771–774 (2013).

https://dx.doi.org/10.1016/j.tetlet.2012.11.114

Dessingou, J., Tabbasum, K., Mitra, A., Hinge, V. K., Rao, C. P., Lower Rim 1,3-Di{4-antipyrine}amide Conjugate of Calix[4]arene: Synthesis, Characterization, and Selective Recognition of Hg 2+ and Its Sensitivity toward Pyrimidine Bases, J. Org. Chem. 77(3), 1406–1413 (2012).

https://dx.doi.org/10.1021/jo2022372

Geddes, C.D., Lakowicz, J. R., Probe and Sensors for Cations: Small molecule sensing in Topics in Fluorescene Spectroscopy, Springer , 328–330 Guo, Z., Zhu, W., Shen, L., Tian, H., A Fluorophore Capable of Crossword Puzzles and Logic Memory, Angew. Chemie Int. Ed. 46(29), 5549–5553 (2007).

https://dx.doi.org/10.1002/anie.200700526

Gupta, V. K., Singh, A. K., Kumawat, L. K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sensors Actuators B Chem. 195, 98–108 (2014a).

https://dx.doi.org/10.1016/j.snb.2013.12.092

Gupta, V. K., Singh, A. K., Mergu, N., Antipyrine based Schiff bases as Turn-on Fluorescent sensors for Al (III) ion, Electrochim. Acta 117, 405–412 (2014b).

https://dx.doi.org: 10.1016/j.electacta.2013.11.143

Han, J., Burgess, K., Fluorescent Indicators for Intracellular pH, Chem. Rev. 110(5), 2709–2728 (2010).

https://dx.doi.org/10.1021/cr900249z

Helal, A., Kim, S. H., Kim, H.-S., A highly selective fluorescent turn-on probe for Al3+ via Al3+-promoted hydrolysis of ester, Tetrahedron 69(30), 6095–6099 (2013).

https://dx.doi.org: 10.1016/j.tet.2013.05.062

Kaur, K., Bhardwaj, V. K., Kaur, N., Singh, N., Imine linked fluorescent chemosensor for Al3+ and resultant complex as a chemosensor for HSO4− anion, Inorg. Chem. Commun. 18, 79–82 (2012).

https://dx.doi.org/10.1016/j.inoche.2012.01.018

Kim, H. M., Cho, B. R., Two-Photon Fluorescent Probes for Metal Ions, Chem. - An Asian J. 6(1), 58–69 (2011a).

https://dx.doi.org: 10.1002/asia.201000542

Kim, H. N., Guo, Z., Zhu, W., Yoon, J., Tian, H., Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev. 40(1), 79–93 (2011b).

https://dx.doi.org/10.1039/C0CS00058B

Kim, J. S., Quang, D. T., Calixarene-Derived Fluorescent Probes, Chem. Rev. 107(9), 3780–3799 (2007). https://dx.doi.org: 10.1021/cr068046j Kim, S. K., Sessler, J. L., Ion pair receptors, Chem. Soc. Rev. 39(10), 3784 (2010).

https://dx.doi.org/10.1039/c002694h

Kim, S., Noh, J. Y., Kim, K. Y., Kim, J. H., Kang, H. K., Nam, S.-W., Kim, S. H., Park, S., Kim, C., Kim, J., Salicylimine-Based Fluorescent Chemosensor for Aluminum Ions and Application to Bioimaging, Inorg. Chem. 51(6), 3597–3602 (2012).

https://dx.doi.org/10.1021/ic2024583

Maity, D., Govindaraju, T., A differentially selective sensor with fluorescence turn-on response to Zn 2+ and dual-mode ratiometric response to Al 3+ in aqueous media, Chem. Commun. 48(7), 1039–1041 (2012).

https://dx.doi.org/10.1039/C1CC16064H

Pischel, U., Chemical Approaches to Molecular Logic Elements for Addition and Subtraction, Angew. Chemie Int. Ed. 46(22), 4026–4040 (2007).

https://dx.doi.org/10.1002/anie.200603990

Rurack, K., Resch-Genger, U., Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches, Chem. Soc. Rev. 31(2), 116–127 (2002).

https://dx.doi.org/10.1039/b100604p

Saini, A. K., Sharma, V., Mathur, P., Shaikh, M. M., The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining, Sci. Rep. 6(1), 34807 (2016).

https://dx.doi.org: 10.1038/srep34807

Selvan, G. T., Poomalai, S., Ramasamy, S., Selvakumar, P. M., Muthu Vijayan Enoch, I. V, Lanas, S. G., Melchior, A., Differential Metal Ion Sensing by an Antipyrine Derivative in Aqueous and β-Cyclodextrin Media: Selectivity Tuning by β-Cyclodextrin, Anal. Chem. 90(22), 13607–13615 (2018).

https://dx.doi.org/10.1021/acs.analchem.8b03810

Shanmugam, P., Rajasingh, P., Montmorillonite K10 Clay Catalyzed Mild, Clean, Solvent Free One-pot Protection-Isomerisation of the Baylis–Hillman Adducts with Alcohols, Chem. Lett. 31(12), 1212–1213 (2002).

https://dx.doi.org/10.1246/cl.2002.1212

Shanmugam, P., Rajasingh, P., Studies on montmorillonite K10-microwave assisted isomerisation of Baylis–Hillman adduct. Synthesis of E-trisubstituted alkenes and synthetic application to lignan core structures by vinyl radical cyclization, Tetrahedron 60(41), 9283–9295 (2004).

https://dx.doi.org/10.1016/j.tet.2004.07.067

Shanmugam, P., Rajasingh, P., Stereoselective synthesis of tri- and tetrasubstituted oxepanes via n-Bu3SnH mediated 7-endo-trig vinyl radical cyclisation, Tetrahedron Lett. 46(19), 3369–3372 (2005).

https://dx.doi.org/10.1016/j.tetlet.2005.03.086

Tamil Selvan, G., Varadaraju, C., Tamil Selvan, R., Enoch, I. V. M. V., Mosae Selvakumar, P., On/Off Fluorescent Chemosensor for Selective Detection of Divalent Iron and Copper Ions: Molecular Logic Operation and Protein Binding, ACS Omega 3(7), 7985–7992 (2018).

https://dx.doi.org/10.1021/acsomega.8b00748

Tamil Selvan, R., Tamil Selvan, G., Varadaraju, C., Enoch, I. V. M. V., Mosae Selvakumar, P., Design and synthesis of a tripodal receptor for the selective detection of Fe3+, Mater. Today Proc. 33, 2139–2143 (2020).

https://dx.doi.org/10.1016/j.matpr.2020.03.069

Vengaian, K. M., Britto, C. D., Sivaraman, G., Sekar, K., Singaravadivel, S., Phenothiazine based sensor for naked-eye detection and bioimaging of Hg( ii ) and F − ions, RSC Adv. 5(115), 94903–94908 (2015).

https://dx.doi.org/10.1039/C5RA19341A

Yin, J., Hu, Y., Yoon, J., Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH, Chem. Soc. Rev. 44(14), 4619–4644 (2015).

https://dx.doi.org/10.1039/C4CS00275J

You, Q.-H., Chan, P.-S., Chan, W.-H., Hau, S. C. K., Lee, A. W. M., Mak, N. K., Mak, T. C. W., Wong, R. N. S., A quinolinyl antipyrine based fluorescence sensor for Zn2+ and its application in bioimaging, RSC Adv. 2(29), 11078 (2012).

https://dx.doi.org/10.1039/c2ra21736h

Contact Us

  • Plot No. 40, III Cross,
    Sakthi Nagar, Thindal, Erode,
    TN, India - 638012
  • editorjent@gmail.com
  • +91 94422 64501