Review Article

Synthesis and Characterization of Fe Doped Manganese Oxide Nanoparticle by using Chemical Precipitation Method

S. Sasikala
Department of Physics, Navarasam arts and science college for women, Erode.
S. Varshaa,  Department of Physics, Navarasam arts and science college for women, Erode.V. Kalaiselvi   Department of Physics, Navarasam arts and science college for women, Erode.

J. Environ.Nanotechnol., Volume 9, No. 4 (2020) pp. 08-11




Nanoparticles research is an area of intense scientific research due to a wide variety of potential applications in biomedical, optical and electronic fields. Manganese oxide nanoparticles can be utilized for advanced materials in batteries, water treatment, and imaging contrast agents. In this present study, Fe doped Manganese Oxide nanoparticles were successfully synthesized by using the chemical precipitation method. The synthesized nanoparticles were characterized by using XRD, SEM, EDAX, FTIR, UV and PL. The average crystallite size of the sample had been investigated by the XRD technique. The morphology and grain size were obtained from SEM images. The elemental composition was confirmed by EDAX. The FTIR studies confirm the various functional groups present in the prepared sample. From the UV spectrum, the optical band gap was calculated. The intensity of emission radiation was absorbed by photoluminescence spectroscopy. This analysis confirmed that the Fe doped MnO has a slightly greater emission band than the pure MnO 

Full Paper


Cherian, E., Rajan, A. and Gurunathan, B., Synthesis of manganese dioxide nanoparticles using co-precipitation method and its antimicrobial activity, Int. J. Mod. Sci. Technol., 1(1), 17-22(2016).

Dang, T. D., Le, T. T., Hoang, T. B. and Mai, T. T., Synthesis of nanostructured manganese oxides based materials and application for supercapacitor. Advances in Natural Sciences: Nanoscience and Nanotechnology,  6(2), 025011(2015).


Lu, X., Yu, M., Wang, G., Zhai, T.,  Xie, S., Ling, Y., Tong, Y. and Li, Y., H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors, Adv. Mater., 25(2), 267-272(2012).


Luo, X,, Morrin, A., Killard, A. J. and Smyth, M. R., Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis, 18(4), 319-326(2006).


Ma,  Y., Fang, C., Ding, B., Ji,  G. and Lee, JY., Fe - Doped MnxOy with Hierarchical Porosity as a High - Performance Lithium - ion Battery anode,  Adv. Mater., 25(33), 4646-4652(2013).


Ma, Z., Huang, X., Dou, S., Wu, J. and Wang, S., One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials, The Journal of Physical Chemistry C., 118(31), 17231-17239(2014).

 doi: 10.1021/jp502226j

Poonguzhali, R., Shanmugam, N., Gobi, R., Senthilkumar, A., Viruthagiri, G. and Kannadasan N., Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals, Journal of Power Sources,293(C), 790-800(2015).


Sagadevan, S., Investigations on synthesis, structural, morphological and dielectric properties of manganese oxides nanoparticles, J. Material. Sci. Eng., 4(3), 1000172(2015).


Wang, Z., Wang, F., Li, Y., Hu, J., Lu, Y. and Xu, M.., Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance, Nanoscale, 8(13):7309-7317(2016).

doi: 10.1039/c5nr08857g.

Yu, Z., Duong, B., Abbitt, D. and Thomas, J., Highly ordered MnO2 nanopillars for enhanced supercapacitor performance, Adv. Mater., 25(24), 3302-3306(2013).


Zhu, J., Tang, S., Xie, H., Dai, Y. and Meng, X., Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors, ACS Appl. Mater. Interfaces, 6(20), 17637-17646(2014).



Contact Us

  • Plot No. 40, III Cross,
    Sakthi Nagar, Thindal, Erode,
    TN, India - 638012
  • +91 94422 64501