Orginal research Article

Response Surface Methodology for Optimizing Process Parameters for Synthesis of Carbon Nanotubes

V.S. Angulakshmi,  Department of Chemistry, Kathir College of Engineering, Coimbatore, Tamilnadu, IndiaN. Sivakumar,  Department of Chemistry, Chikkanna Government Arts College, Tirupur, Tamilnadu, India.S. Karthikeyan
Department of Chemistry, Chikkanna Government Arts College, Tirupur, Tamilnadu, India.

J.Environ. Nanotechnol., Volume 1, No. 1 (2012) pp. 40-45




Response surface methodology was employed to optimize the synthesis parameters for Carbon nanotubes. Such optimization was undertaken to ensure a high efficiency over the experimental ranges employed and to evaluate the interactive effects of the temperature, catalyst amount, and volume of carbon for synthesis of Multi-walled carbon Nanotubes (MWCNTs) from methylated ester of Helianthus annuus oil on silica supported Fe/Mo catalyst by spray pyrolysis method. A total of 17 experimental runs were carried out employing the detailed conditions designed by response surface methodology based on the Box- Behnken design. The experimental confirmation tests showed a correlation between the predicted and experimental responses. The optimal point obtained was located in the valid region and the optimum adsorption parameters were predicted as a temperature of 668 0 C, a precursor volume of 21ml and catalyst weight of 0.78 g. Under these conditions, a highest yield of 75% was achieved from spray pyrolysis method.

Full Paper


Adinarayana, K. and Ellaiah, P., Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus, J. Pharm.Pharm.Sci., 5 (3), 272- 278 (2002).

Amini, M., Younesi, H., Bahramifar, N., Lorestani, A.A.Z., Ghorbani, F., Daneshi, A. and Sharifzadeh, M., Application of response surface methodology optimization of lead bisorption in an aqus solution by Aspergillus niger, J. Hazard.Mater., 154 (1-3), 694- 702 (2008).

Cassell, A., Delzeit, L., Nguyen, C., Stevens, R., Han, J., Meyyappan, M., Carbon nanotubes by CVD and applications, J. Phys.IV, 11 (PR 3), 401-9 (2001).

Cassell, A.M., Verma, S., Delzeit, L., Meyyappan, M. and Han, J., Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes, Langmuir, 17 (2), 260-4 (2001).

Cassell, A.M., Ng, H.T., Delzeit, L., Ye, Q., Li, J., Han, J., et al., High throughput methodology for carbon nanomaterials discovery and optimization, Appl.Catal, A., 254 (1), 85-96 (2003).

Cui, S., Lu, C.Z., Qiao, Y.L. and Cui, L., Large – scale preparation of carbon nanotubes by
nickel catalyzed decomposition of methane at 600 ºC, Carbon , 37 (12), 2070-3 (1999).

Ebbesen, T.W., Ajayan, P.M., Large-scale synthesis o carbon nanotubes, Nature, 358 (6383), 220-2 (1992).

Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H.W. and Sarkar, A., Pyrolytic carbon nanotubes from vapor-grown carbon fibers, Carbon, 33(7), 873-81 (1995).

Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M. and Dai, H., Self-oriented regular arrays of carbon nanotubes and their field-emission properties, Science, 283 (5401), 512-514 (1999).

Iijima, S., Helical microtubules of graphitic carbon, Nature, 354 (6348), 56-58 (1991).

Kalavathy, M.H., Regupathi, I., Pillai, M.K.G., and Miranda, L.R., Modeling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood saw dust sign response surface methodology, Colloids surface B , 70 (1) , 35-45 (2009).

Kong, J., Cassell, A.M. and Dai, H., Chemical vapor deposition of methane for single- walled nanotubes, Chem. Phys. Lett., 292(4-6), 567-74 (1998).

Kumar, M., Ando, Y., A simple method of producing aligned carbon nanotubes from an unconventional precursor- camphor, Chem. Phys. Lett., 374 (5), 521- 6 (2003).

Li, W.Z., Xie, S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., et al., Large –scale synthesis of aligned carbon nanotubes, Science, 274(5293), 1701-3 (1996).

Mamalis A.G, Vogtlander L.O.G., Markopoulos, A., Nanotechnology and nanostructured materials: trends in carbon nanotubes, Precis Eng., 28 (1), 16-30 (2004).

Montgomery, D.C., Design and analysis of Experiments, 5th Edition, John wiley and sons, Newyork (2000).

Ng, H.T., Chen, B., Koehne, J.E, Cassell, A.M., Li, J., Han, J., et al., Growth of carbon nanotubes; a combinatorial method to study the effects of catalyst and under layers, J.Phys.Chem.B, 107 (33), 8484-9 (2003).

Pradip Ghosh, Rakesh A. Afre, Soga, T., Jimbo, T., A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus Oil, Mater. Lett., 61 (17), 3768-3770 (2007).

Rakesh, A. Afre, Soga T, Jimbo T, Mukulkumar, Ando Y, Sharon M., Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine Oil, Chem. Phys. Lett., 414 (1-3), 6-10 (2005).

Sen, R., Govindaraj, A. and Rao, C.N.R., Carbon nanotubes by the metallocene route, Chem.Phys.Lett., 267 (3,4), 276-280 (1997).

Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P.,Robert, J., et al., Crystalline ropes of metallic carbon nanotubes, Science, 273(5274), 483-7 (1996).

Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., et al., Organized assemble of carbon nanotubes, Nature, 416 (9), 495-6 (2002).

Contact Us

  • Plot No. 40, III Cross,
    Sakthi Nagar, Thindal, Erode,
    TN, India - 638012
  • +91 94422 64501