A Comprehensive Review on Zinc Sulphide Thin Film by Chemical Bath Deposition Techniques

T. Shobana¹, T. Venkatesan², D. Kathirvel³*

¹Department of Physics, St. Joseph’s College for Women, Tiruppur, TN, India
²Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India
³Department of Physics, Government Arts College, Coimbatore, TN, India

Received: 23.01.2020 Accepted: 28.02.2020 Published: 30-03-2020
*kathirvelde@gmail.com

ABSTRACT

Nowadays, the synthesis of metal chalcogenides has received wide attention because of their suitability, simplicity and cost-effectiveness for large scale deposition by the selection of suitable chemical methods. Predominantly, thin-film technology has led to large-scale deposition techniques, using the variety of substrates such as insulators, semiconductors and metals. These methods are applicable at low temperatures, reducing the chances of oxidation and corrosion of the substrate. Among the various methods, Chemical Bath Deposition is highly attractive, owing to its advantages over conventional thin film deposition method. Moreover, it does not require high temperature as well as sophisticated and expensive equipment. Most researchers focused on the metal sulphides; they have a wide range of applications like sensors, modulators, dielectric filters, LEDs, efficient phosphors in flat panel display and buffer layers in the solar cells. A comprehensive review has been attempted in this work with necessary background theory for the thin film depositions. The Chemical Bath Deposition method has been reviewed in detail to obtain well-adherent and uniform zinc sulphide thin films. Bath parameters and structural, morphological, optical, and electrical properties were highlighted.

Keywords: Chemical bath deposition; Metal chalcogenides; Thin films; Zinc sulphide.

1. INTRODUCTION

Transition metals with group 16 elements are generally known as metal chalcogenide (Palve et al. 2019). Metal chalcogenides are wide band-gap semiconducting materials and metal chalcogenides thin films have novel applications in various fields such as superconducting films, anti-corrosive films, diamond films, surface modification, hard coatings, photoconductors, Infrared detectors, solar cells, solar selective coatings, optical imaging, magnetic films, optical mass memories, temperature control of satellites, wave-guide coatings, sensors, fabrication of large area photodiode arrays and catalysts. The usage of thin film-based solid state electronic devices rapidly increased as well as integrated chips for monolithic and hybrid microelectronics. Today, numerous techniques are available for the growth/deposition of metal sulphide thin films: vacuum evaporation, electro-deposition, electro-conversion, dip growth, spray pyrolysis (Hernández-Fenollosa et al. 2008), sputtering, successive ionic adsorption and reaction, chemical bath deposition method (Roy et al. 2006), sol-gel method, solution-gas interface technique, thermal oxidation, molecular beam epitaxy, etc. Among these methods, chemical vapour deposition (Lee et al. 2005), spray pyrolysis (Hernández-Fenollosa et al. 2008) and vacuum evaporation methods require consciousness of high temperature for specific and useful deposition of chalcogenides thin films. On the other hand, some of the chemical solution methods need very low temperature for the successful deposition of chalcogenides thin films. Recently, numerous researcher reported that Chemical bath deposition (CBD) played a major role in deposition of thin films (Biswa et al. 2005; Roy et al. 2006; Prabahar et al. 2009a; Prabahar et al. 2009b; Kathirvel et al. 2011; Srikanth et al. 2011; Jeyachitra et al. 2014; Gallanti et al. 2016), owing to its easily attainable temperature, simplicity, convenience for large scale deposition and cost-effectiveness.

Many researchers established and reported a versatile and environmental friendly solution approach for the fabrication of a variety of metal sulphide thin films because of the easy availability and low cost of the starting materials. Metal hydroxides, metal oxides, metal chlorides, metal acetylacetonates and metal acetates were used as the starting materials (Tian et al. 2014). They dissolved in thioglycolic acid and ethanalamine, forming many types of metal organic precursor solutions.

This work provides a comprehensive review of recent researches towards ZnS thin film preparation using CBD technique. Light has been thrown upon the
major properties of ZnS film, the benefits of employing CBD method for ZnS thin film preparation and observed variations in its properties like film growth rate, crystalline nature, surface morphology and optical spectra.

2. BASIC PROPERTIES OF ZnS

Among all metal chalcogenides, ZnS is an important semiconductor compound of II–VI group with excellent physical properties and direct wide band-gap energy of 3.7 eV at 300 K; it has attracted great attention (Salim et al. 2012; Palve et al. 2019). The two basic types are: cubic phase (sphalerite) and hexagonal phase (wurtzite). ZnS thin film act as a “buffer” and “window” layer in hetero-junction solar cells. It has numerous applications in optoelectronics (Xiong et al. 2004; Daniels et al. 2006), solar cells, lasers (Biswas et al. 2008), phosphor host (Wang et al. 2000), optical sensors (Biswas et al. 2005) and luminescence (Zhu et al. 2003; Goswami et al. 2007); because of high refractive index (2.35), it is used in anti-reflection and coating (Liu et al. 2009).

Table 1. Some important parameters and their effects on various properties of ZnS thin films by CBD method (Sinha et al. 2018)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the parameter</th>
<th>Properties of ZnS films</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Zinc salt and [Zn]/[S] ratio</td>
<td>Crystalline behaviour, morphology, film growth</td>
</tr>
<tr>
<td>2.</td>
<td>Complexing agent</td>
<td>Crystalline behaviour, morphology, optical transmittance, thickness and roughness</td>
</tr>
<tr>
<td>3.</td>
<td>Stirring speed</td>
<td>Thickness and roughness, film growth rate</td>
</tr>
<tr>
<td>4.</td>
<td>pH value</td>
<td>Crystalline behaviour, optical transmittance, band-gap, film growth rate</td>
</tr>
<tr>
<td>5.</td>
<td>Deposition temperature</td>
<td>Thickness, optical transmittance, band-gap, pH of solution, morphology</td>
</tr>
<tr>
<td>6.</td>
<td>Deposition time</td>
<td>Crystalline behaviour, thickness, band-gap</td>
</tr>
<tr>
<td>7.</td>
<td>Humidity</td>
<td>Crystalline behaviour, morphology, optical transmittance</td>
</tr>
<tr>
<td>8.</td>
<td>Annealing</td>
<td>Crystalline behaviour, morphology, optical transmittance</td>
</tr>
</tbody>
</table>

Table 2. Properties of ZnS (Navneet et al. 2016)

<table>
<thead>
<tr>
<th>Name of property</th>
<th>Name of the parameter</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Properties</td>
<td>Chemical formula</td>
<td>ZnS</td>
</tr>
<tr>
<td></td>
<td>Molecular weight</td>
<td>97.46 g/mol</td>
</tr>
<tr>
<td></td>
<td>Group</td>
<td>Zinc-12</td>
</tr>
<tr>
<td></td>
<td>Crystal Structure</td>
<td>Cubic</td>
</tr>
<tr>
<td></td>
<td>Lattice Constant</td>
<td>5.4093 Å</td>
</tr>
<tr>
<td>Electric Properties</td>
<td>Dielectric Constant</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>Electronic configuration</td>
<td>Zinc:[Ar] 3d^{10} 4s^{2} 4p^{6}</td>
</tr>
<tr>
<td></td>
<td>Sulphur:[Ne] 3s^{2} 3p^{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Band Gap</td>
<td>3.54 eV</td>
</tr>
<tr>
<td></td>
<td>Electron Mobility</td>
<td>180 cm²/Vs</td>
</tr>
<tr>
<td></td>
<td>Hole Mobility</td>
<td>5 cm²/Vs</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td>Heat of Fusion</td>
<td>390 J/g</td>
</tr>
<tr>
<td></td>
<td>Heat of Formation</td>
<td>477 KJ/mol</td>
</tr>
<tr>
<td></td>
<td>Thermal coefficient of Expansion</td>
<td>6.36 μm/m °C</td>
</tr>
<tr>
<td></td>
<td>Thermal Conductivity</td>
<td>25.1 W/mK</td>
</tr>
<tr>
<td></td>
<td>Specific heat capacity</td>
<td>0.472 J/g°C</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>4.079 g/cm³</td>
</tr>
<tr>
<td></td>
<td>Boiling Point</td>
<td>1185 °C</td>
</tr>
<tr>
<td></td>
<td>Melting Point</td>
<td>1850 °C</td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td>Flexural Strength</td>
<td>103 MPa</td>
</tr>
<tr>
<td></td>
<td>Modulus of Elasticity</td>
<td>75 GPa</td>
</tr>
<tr>
<td></td>
<td>Poisson’s Ratio</td>
<td>0.27</td>
</tr>
<tr>
<td>Optical Properties</td>
<td>Refractive Index</td>
<td>2.356</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>Solubility in water</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>Appearance</td>
<td>Grey-white to yellow powder</td>
</tr>
<tr>
<td></td>
<td>Odour</td>
<td>Sulphurous odour</td>
</tr>
</tbody>
</table>
3. PREPARATION TECHNIQUE: CHEMICAL BATH DEPOSITION (CBD) METHOD

This review is confined to the deposition of ZnS thin films mainly by CBD technique. A collection of various preparation procedures and deposition of ZnS thin film, based on CBD technique in recent days are given in Table 3.

Moreover, this method gives stable, adherent, uniform and hard films with good reproducibility by a relatively simple process, only it requires a small and portable apparatus (fig.1) setup. And during deposition, for the shaking of sample compartment, closed and isolated apparatus is more desirable to become an isolated apparatus.

Table 3. Details on preparative conditions and properties of ZnS thin films (CBD method)

<table>
<thead>
<tr>
<th>Bath Composition</th>
<th>pH value</th>
<th>Prepared film thickness (nm)</th>
<th>Deposition Temp. (°C)</th>
<th>Time</th>
<th>Selected Substrate</th>
<th>Remarks</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnSO₄, CS(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>2 h</td>
<td>Soda-lime glass</td>
<td>-</td>
<td>(Wei et al. 2013)</td>
</tr>
<tr>
<td>ZnSO₄, CS(NH₂)₂, NH₄H₂O</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>40 min</td>
<td>Microscopic glass</td>
<td>-</td>
<td>(Mukhamale et al. 2013)</td>
</tr>
<tr>
<td>ZnSO₄, CS(NH₂)₂, NH₄OH</td>
<td>10</td>
<td>-</td>
<td>80</td>
<td>1 h</td>
<td>Glass</td>
<td>-</td>
<td>(Al-khayatt et al. 2014)</td>
</tr>
<tr>
<td>ZnSO₄, CS(NH₂)₂, NH₄OH</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>2 h</td>
<td>Glass</td>
<td>-</td>
<td>(Zhou et al. 2009)</td>
</tr>
<tr>
<td>ZnSO₄, CS(NH₂)₂, Na₂C₂H₄O₂</td>
<td>2, 3, 4</td>
<td>759.7</td>
<td>80</td>
<td>100 min</td>
<td>Glass</td>
<td>-</td>
<td>(Min et al. 2011)</td>
</tr>
<tr>
<td>ZnCl₂, CS(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>10-11.5</td>
<td>600 to 320</td>
<td>90</td>
<td>3 h</td>
<td>Glass</td>
<td>Transmittance=70% and E₀=3.78 to E₀=3.67 eV</td>
<td>(Ben Nasr et al. 2006)</td>
</tr>
<tr>
<td>ZnCl₂, CS(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>11.5</td>
<td>-</td>
<td>90</td>
<td>3 h</td>
<td>Glass</td>
<td>-</td>
<td>(Eid et al. 2010)</td>
</tr>
<tr>
<td>ZnCl₂, CS(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>11.5</td>
<td>-</td>
<td>90</td>
<td>1-3 h</td>
<td>Glass</td>
<td>-</td>
<td>(Salim et al. 2012)</td>
</tr>
<tr>
<td>Zn(CH₃COO)₂, CS(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>8-9</td>
<td>84-85</td>
<td>70</td>
<td>24 h</td>
<td>Glass</td>
<td>-</td>
<td>(Sarma et al. 2015)</td>
</tr>
<tr>
<td>Zn(CH₃COO)₂, CS(NH₂)₂, Na₂C₂H₄O₂</td>
<td>-</td>
<td>60</td>
<td>80</td>
<td>1 h</td>
<td>Glass</td>
<td>E₀=3.75 eV</td>
<td>(Mallick et al. 2019)</td>
</tr>
<tr>
<td>Zn(CH₃COO)₂, CS(NH₂)₂, NH₄OH</td>
<td>10.5</td>
<td>1300</td>
<td>30</td>
<td>3 days</td>
<td>Glass</td>
<td>E₀=3.851 eV</td>
<td>(Mukherjee et al. 2015)</td>
</tr>
<tr>
<td>ZnSO₄, CS(NH₂)₂, NH₄OH</td>
<td>-</td>
<td>-</td>
<td>70, 89, 118, 160 nm</td>
<td>65, 70, 75, 80</td>
<td>Glass</td>
<td>E₀=4.05 – 3.97 eV, ZnS NPs radius = 1.9, 2.3, 2.45, 2.51 nm</td>
<td>(Zein et al. 2019)</td>
</tr>
<tr>
<td>ZnSO₄, CS(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>10 - 60 min</td>
<td>Silicon</td>
<td>Substrate tilting angle = 30 - 60°</td>
<td>(Gangopadhyay et al. 2004)</td>
</tr>
<tr>
<td>Zn(CH₃COO)₂, CS(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>10</td>
<td>220 nm</td>
<td>80</td>
<td>4 h</td>
<td>Glass</td>
<td>E₀=3.53 eV</td>
<td>(Cheng et al. 2003)</td>
</tr>
<tr>
<td>ZnSO₄, SC(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>-</td>
<td>570 nm</td>
<td>90</td>
<td>1 h</td>
<td>Glass</td>
<td>-</td>
<td>(Kamoun Allouche et al. 2010)</td>
</tr>
<tr>
<td>ZnCl₂, SC(NH₂)₂, NH₄OH, NH₄H₂O</td>
<td>-</td>
<td>700 nm</td>
<td>90</td>
<td>2 h</td>
<td>Glass</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Deposition of ZnS thin film by CBD method refers to the main reaction between Zn^{2+} and S^{2-} ions. The precursors of zinc solution are commonly zinc acetate $[Zn(CH_3COO)_{2}]$, zinc sulphate $[ZnSO_4]$, or zinc chloride $[ZnCl_2]$. Most preferably, thiourea $[CS(NH_2)_2]$ is used as sulphur ions reagent. Both are mixed together and hence it called as one-pot preparation method. In addition, to maintain a constant pH value, one or more complexing agents such as ammonia solution (NH_4OH), tri-sodium citrate (TSC) $(Na_3C_6H_5O_7)$, triethanolamine (TEA) $(C_6H_5NO_3)$, Na_2-EDTA $(Na_2C_{10}H_{16}N_2O_8)$ or hydrazine hydrate (HH) (N_2H_4) are used, giving uniformity to the as-prepared ZnS thin films, even though, the purity of chemicals is another essential factor which will have a significant effect on the results.

The main feature of CBD technique is that the reaction starts only when the solution with the substrate dipped inside the solution, placed in a bath is maintained within a suitable temperature range depending on the demand of material formation. During deposition process, at temperatures below the room temperature, it is very difficult to deposit a ZnS thin film by CBD method. Alternatively, a water bath is used for deposition in the CBD process. Hence, in CBD equipment, a container is filled with heated water and then sample is placed in the water bath at a constant temperature over a certain period of time. Therefore, the CBD method can control the structural and optical properties of the prepared films by changing the bath temperature, pH value of the prepared solution, stirring speed, concentration of reagents, complexing agent, deposition time and annealing conditions.

4. RESULTS AND DISCUSSION - REVIEW OF LITERATURE

Lădar et al. 2007 prepared and reported for monolayer and multilayer of ZnS thin films by CBD techniques in the alkaline medium using zinc acetate and thiourea. They employed the sodium citrate as a complexing agent for the preparation of ZnS thin films and reaction involved in the analysis was as given below:

$$Zn(CH_3COO)_2 + (NH_2)_2CS + 2OH^- \rightarrow$$

$$ZnS + H_2CN + 2H_2O + 2CH_3COO^-$$

They investigated the influence of the sodium citrate complexing agent on the thickness of ZnS films at constant zinc acetate and thiourea concentration. In addition, the concentration of complexing agent influences the film quality and growth rate. Hence, the thickness of ZnS films grown onto glass substrates is dependent on deposition time. For the typical CBD techniques, when the deposition time is double, the thickness does not increase twice. Because, the initial growing rate decreases with time and thickness tends to level off. Moreover, the total deposition time is the same for the monolayer ZnS thin films having smaller thickness as that of multilayer ZnS thin films. They also reported the XRD, photoluminescence of prepared ZnS films. They concluded that further investigations are needed in order to explain the observed properties and to obtain more optimum luminescent ZnS layers.

Gallanti et al. 2016 developed a new bath technique for the preparation of photo-chemical deposition of ZnS thin film on CIGSe substrate for solar cell applications. They studied the effect of the deposition time on the thickness of the deposited films and reported the growth of the films with three stages, viz. i) an induction time at the beginning of the process where no observable growth occurs, ii) an approximately linear region and iii) a termination step where no further growth occurs. They studied the morphology of as-prepared ZnS films deposited on a CIGSe substrate in 25 minutes and then obtained the homogeneous ZnS film with a thickness of 20 nm. They also studied the opto-electronic properties of the prepared solar cells with the deposition time varied between 10 and 50 minutes. They optimized the efficiency for deposition time rate between 25 and 30 minutes. Therefore, they reported that the method has a higher efficiency for the solar cell preparation; moreover, the as-prepared solution could be re-used four times consecutively, which is a great main advantage. They mainly achieved the better fill factor and short-current density. Finally, they concluded that the ZnS buffer layer deposition on CIGSe substrate has no need to heat the prepared solution and no need to prevent precipitation of various species using complexing agent and it is easy to implement for low reactant concentrations.
Ben Nasr et al. 2006 reported the pH contribution for the structure and growth of deposited zinc sulphide thin films on glass substrates by CBD technique. They analysed and reported thin films using the XRD, SEM and optical studies. The researchers analysed by changing the pH in the chemical bath which induced the layer of crystallinity of the ZnS thin films and they found the best pH value as 10. In the XRD analysis, they observed the two main peaks at the diffraction angles of 28.8° and 47.7° which were assigned to both cubic and hexagonal phases of the planes (111)cub / (002)hex and (220)cub / (110)hex. Moreover, the other characteristic peaks of (100), (101), (102), (103) and (200) planes of hexagonal were not present in all spectra. Hence, the prepared ZnS films were having cubic structure (h-ZnS), irrespective of the tested pH values. In the optical transmission analysis, the band gap energy was obtained and it varied from 3.67 to 3.88 eV. Particularly, the band gap energy was 3.78 eV for the crystalline structure of film at pH=10 in chemical bath. Also, it closely agrees with the ZnS thin films obtained by CBD technique. Moreover, these studies have shown that the pH contributes for the growth and the structure of deposited thin films. They particularly observed and found the best crystallinity of the ZnS thin films at a pH of 10 and then analysed.

Oliva et al. 2010 investigated single-phase ZnS films prepared by CBD method and the prepared films were transparent, pale-white in colour and had good adherence. Under light reflection, these films appeared in golden colour. They studied the structural, morphology and optical band gap energy. In this method higher KOH concentrations were used for CdS films deposition by changing the pH of the bath (Cd salt by a Zn salt). The chemical bath’s optimal pH was 11.5 with the KOH reagent. The pH value in the chemical bath was a key factor, because concentrations below 1.0 M do not produce conditions for ZnS films deposition. This effect was also reported by Antony et al. [10] for a chemical bath with Zn(NO₃)₂ and NH₄OH as the salt reagent and the source of OH radicals, respectively. Annealing treatments at 200 °C and 400 °C on ZnS films were done in order to study their effects. Small changes were obtained on the optical properties of ZnS films with the annealing treatment, as demonstrated by the reduction of the band gap energy value for higher annealing temperatures. However, they found that the annealing process did not produce important changes on the crystalline structure of the films. The optical direct band gap energy of ZnS films was found by spectrophotometry technique and calculated from the absorption spectra through the relation:

\[\alpha^2(h\nu) = A^2(h\nu - E_g) \]

where \(\alpha\) is the optical absorption co-efficient, \(E_g\) is the energy of the incident light, \(h\) is the Planck’s constant and \(\nu\) is the light frequency. By plotting \(\alpha^2\) vs \(h\nu\), the bandgap energy of the initial absorption edge line when \(\alpha=0\). They calculated the ZnS optical transmittance between 70-80% in the visible light spectrum range. The deposited films change the band gap energy values from 3.70 eV to 3.45 eV for as-grown and for annealed films, respectively. The films’ stoichiometry ratio (Zn:S) was close to 1.0:1.2 both for punctual and zone analysis.

Liu et al. 2012 developed the uniform ZnS thin film composed of nano-crystallines with CIGS solar cell deposited by CBD technique. The deposition morphology, growth rate, structure and optical properties of ZnS thin films within 100 nm thickness was investigated by a Field emission scanning electron microscope (FE-SEM), Transmission electron microscope (TEM), X-ray diffractometer (XRD), Atomic force microscope (AFM) and Ultraviolet visible light spectrocope (UV/Vis.). FESEM morphologies / images showed the impact of even and dense ZnS films deposited on soda lime glass used to high concentration ratio of thiourea. The ZnS thin film grow rate was 0.88 nm/min. The TEM diffraction patterns and XRD patterns revealed that ZnS films were nano-crystallines, of which FCC (111) phase dominated over others. The transmittance and band gap of ZnS thin films are over 80% in the range of 300-800 nm and 3.83–3.85 eV, respectively. The ZnS/CIGS/FTO structure and Al:ZnO/ZnO/ZnS structure in CIGS solar cell formed by wet processes showed good hetero-interfaces.

Zhou et al. 2009 reported the structural characterization of zinc sulphide (ZnS) thin films deposition by CBD on glass substrates. The solution concentration and annealing condition played a very important role on homogeneity, crystal and transmissivity of ZnS thin films. Spectrophotometer, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and digital four-point probe resistance measurement were used to characterize their properties and composition.

- The trend of the transmissivity was upward within the range of 300–600 nm wavelength of incident light; then it would be stable above 600 nm. Transmissivity of the ZnS films were more than 80%. Transmissivity of the ZnS films without annealing was greater than that at 200 °C and higher than that at 300 °C, for 1 h. As concentration of ZnSO₄ was lower between 0.020 and 0.030 mol/L, transmissivity of the ZnS film was higher.
- The films’ structure was basically amorphous or microcrystalline; after annealing, the main diffraction peaks due to ZnS (III) planes were corresponding to sphalerite-type ZnS.
- The particles of the films surface were almost spherical and homogeneous, and there were some white spots.
• The resistance of the ZnS films without annealing reduced with the increasing concentration of ZnSO₄.

Bian et al. 2008 have adopted CBD method to form ZnS thin films which were deposited on glass substrates at 80–82 °C temperature. When the film deposition is in process, they added the complexing agents namely, ammonia or ammonia-hydrazine hydrate; they influenced the quality of as-deposited films and the substrate was in vibration condition. They reported the role of hydrazine hydrate for the growth of ZnS thin films. It has improved the homogeneity, specularity and the growth rate of films. Also, the addition of hydrazine hydrate led to a few white grains of film. Moreover, vibration of substrate reduced the formation of pinholes and improved the uniformity of the films. The physical and optical properties of as-prepared films were characterized using XRD, SEM and UV-Vis. spectroscopy. From the XRD analysis, ammonia-hydrazine was found to be a better complexing agent compared with other agents and it has shown a hexagonal crystallization structure with (008) diffraction peak. The prepared ZnS films exhibited good optical properties with high transmittance (~80%) in the visible region and the band gap value was estimated in the range of 3.5–3.70 eV.

In 2017, González-Chan et al. 2017 have analysed the physico-chemical process of zinc sulphide (ZnS) thin films by chemical bath deposition (CBD). They have investigated the performance of the ZnS solution contained zinc chloride, potassium hydroxide, ammonium nitrate and thiourea. These chemical compound permitted the physico-chemical analysis of ZnS thin film deposition. Then the solubility curves and species distribution diagrams have been utilized to obtain the best conditions for ZnS thin film deposition and the various concentration of the bath temperatures in the range of 25 to 90 °C at different deposition time rate (González-Panzo et al. 2014). The results indicated the necessity to adjust the thiourea solution concentration according to the bath temperature; it helps the formation of ZnS thin film deposition in order to contribute with enough amounts of sulphur ions in the bath solution. They also reported the thiourea concentrations with respect to the bath temperatures like 2.25 M (25 °C), 1.25 M (40 °C), 0.6 M (60 °C) and 0.2 M (90 °C). The impact of thiourea at low concentration, in the formation of ZnS thin films was the poor quality obtained due to the excess of zinc hydroxi-complexes. Moreover, the detailed relative properties such as optical, stoichiometric and morphological have been reported at different concentration of thiourea.

<table>
<thead>
<tr>
<th>Sample preparation temp.</th>
<th>Thiourea concentration</th>
<th>Zn/S ratio</th>
<th>Bandgap energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>2.25 M</td>
<td>0.96</td>
<td>3.72 eV</td>
</tr>
<tr>
<td>40 °C</td>
<td>1.25 M</td>
<td>0.90</td>
<td>3.69 eV</td>
</tr>
<tr>
<td>60 °C</td>
<td>0.60 M</td>
<td>1.11</td>
<td>3.66 eV</td>
</tr>
<tr>
<td>90 °C</td>
<td>0.20 M</td>
<td>1.15</td>
<td>3.65 eV</td>
</tr>
</tbody>
</table>

The ratio of Zn/S close to 1, homogeneous surfaces with similar grains size, optical transmission between 80 and 85%, and bandgap energy close to the bulk value of 3.72 eV were obtained for all the thin films deposited with the proper conditions of thiourea at different concentration with four different temperatures viz. as 25 °C, 40 °C, 60 °C and 90 °C with optimized deposition time rate. Thus, as-deposited ZnS thin films have good quality at the wide range of bath temperatures, but adequate chemical conditions are required. Finally, they reported that the solubility curves and species distribution diagrams proved the best physico-chemical conditions.

Patel et al. 2018; Khatri et al. 2018 investigated the properties of ZnS thin films deposited on glass substrate by using CBD technique at 70 °C bath temperature with the effect of post annealing at 350°C temperature for 1 h. XRD confirmed hexagonal phase for both as-grown and annealed ZnS thin films. The average crystallite size was 331 nm for as-grown and 643 nm for annealed thin films using Debye-Scherrer equation. TGA analysis has shown that 350 °C is suitable for annealing process of ZnS thin film and optical measurement has shown that the transmittance of film was in the range of 5–35% in the visible region. Also, the films have direct bandgap, which increased from 3.80 to 4.18 eV with annealing at 350 °C for 1 h. Finally, they reported that the materials can be potentially used in electroluminescence devices and photovoltaic cells. For doping on ZnS, as-prepared thin films have been developed for huge number of applications. Doped ZnS may have either cubic or hexagonal structure as Zinc Blende (ZB) or Wurt Zite (WZ), which depends on its synthesis conditions like sample prepared temperature, precursor type and concentration. For Co, Cu, Fe and Sn, doped in ZnS thin film, properties have been given in Table 5 (Shakil et al. 2018).
Table 5. Comparison of Cu, Sn, Co and Fe doping in ZnS for some properties (Mukherjee et al. 2017; Shakil et al. 2018)

<table>
<thead>
<tr>
<th>Property</th>
<th>Co-doped</th>
<th>Cu-doped</th>
<th>Fe-doped</th>
<th>Sn-doped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic No.</td>
<td>27</td>
<td>29</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>Band Gap (eV)</td>
<td>3.6</td>
<td>3.47</td>
<td>3.94</td>
<td>3.90</td>
</tr>
<tr>
<td>Crystallite size (nm)</td>
<td>12</td>
<td>11</td>
<td>10.38</td>
<td>12</td>
</tr>
<tr>
<td>Structure</td>
<td>Zincblende (ZB)</td>
<td>Wurtzie (WZ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure type</td>
<td>Cubic</td>
<td>Hexagonal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. CHARACTERIZATION OF THE FILMS - MEASUREMENTS

From Table 5, it can be inferred that due to change of doping element, the energy band gap, structure as well as crystallite size may vary with respect to the selection dopant; also, it may vary with the concentration of doping element also.

5.1 X-ray Diffraction (XRD)

Grain size of the crystalline structure of the prepared film is obtained by substituting values of Full Wave Half Maximum (FWHM) in the well-known Debye-Scherrer formula (Jones et al. 1938):

\[D = \frac{K \lambda}{\beta \cos \theta} \]

where, D is crystalline size, K is the Scherrer constant (= 0.94), \(\lambda \) is the wavelength (=1.54059\(\text{Å} \)) of the X-ray source used, \(\beta \) is the full width at half maximum intensity in radians and \(\theta \) is the angle of diffraction at the peak or Bragg’s angle.

5.2 Lattice Constant

The lattice constant for both doped and un-doped thin films are determined from the relation:

\[a = \frac{d}{\sqrt{h^2 + k^2 + l^2}} \]

where, \(d \) is the spacing between the crystal planes. The lattice parameter \(a \) for ZnS structure was obtained from the \(d \) interplanar spacing of different peaks by the equation,

\[d_{\text{int}} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \]

The precise value of lattice parameter \(a \) can be estimated from Nelson-Riley function (Long et al. 2008),

\[F(\theta) = \frac{\cos^2 \theta}{\sin \theta} + \frac{\cos^2 \theta}{\theta} \]

where, \(\theta \) is the Bragg’s angle.

5.3 Optical Characterizations

5.3.1. Absorbance of the Film

The spectrophotometer used to obtain the optical information for the absorbance of the film. The absorbance \(\alpha \) is obtained from the relation:

\[\alpha = \frac{2.30 A}{t} \]

Where, \(t \) is the thickness of the deposited film, \(A \) is the absorbance and reflectance is neglected for highly transmitting film.

5.3.2. Bandgap Estimation

The bandgap of materials is a very important parameter that determines the application of the films. It is evaluated using the formula (Ezekoye et al. 2005),

\[\alpha = \left(\frac{A}{h \nu} \right) (\nu - E_g)^n \]

where, \(n=1/2 \) for allowed direct bandgap transition materials. The plot of \(\alpha^2 \) or \((ah\nu)^2 \) versus photon energy \(h\nu \) (in eV) with extrapolation of the straight-line portion of the curve to zero shows that the absorption coefficient \(h\nu \) (axis) gives the direct bandgap energy of materials. \(n=2 \) shows the allowed indirect bandgap transition. The plot of \(\alpha^{1/2} \) or \((ah\nu)^{1/2} \) versus photon energy \(h\nu \) (in eV) with extrapolation of the straight-line portion of the curve to zero shows that the absorption coefficient \(h\nu \) (axis) gives the indirect bandgap energy of materials. \(n=2/3 \) indicates that forbidden direct transition and \(n=3 \), the forbidden indirect transition (Ezekoye et al. 2005).

5.4 Optical Measurement

From UV-Vis. region spectrometer operated in the wavelength range of 400-700 nm, the optical absorption coefficient, \(a \), was calculated from the values.
of Tand Rusing, using the following relation (Ezekoye et al. 2005),

\[
\alpha = \frac{1}{t} \ln \left[\frac{1 - R}{2T} \left(1 - \frac{1}{4T^2} + R^2 \right)^{1/2} \right]
\]

where, \(t \) is the film thickness and \(k \) is the extinction coefficient \(k = \frac{\alpha \lambda}{4\pi} \). The refractive index, \(n \), can be calculated using the relation:

\[
R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}
\]

From the spectral variation of the refractive index and the extinction coefficient for ZnS films of different thickness, it is seen that the refractive index of ZnS films increase with the increase in the film thickness. In order to deduce the band gap of the thin films, the absorption coefficient of the investigated ZnS films are analyzed using the equation (Pankove et al. 1971),

\[
(\alpha h\omega) = A(h\omega - E_g)^p
\]

where, \(h\omega \) is the photo energy, \(A \) is a parameter that depends on the transition probability, \(E_g \) is the optical band gap and the exponent \(p \) depends on the type of the optical transition between the valence and the conduction band, direct or indirect transition (Pankove et al. 1971).

5.5 Applications of Zinc sulphide thin film

It has numerous applications such as ZnS nanostructures being used as field emitters, field effect transistors (FETs), catalysts, fuel cells, electroluminescence devices, solar cells, UV-light and chemical sensors, humidity and gas sensors, biosensors and nanogenerators.

6. CONCLUSION

A comprehensive review related to the necessary background theory of ZnS thin film deposition has been attempted in this work. Light has been thrown upon the usage of Chemical bath deposition method for well-adherent and uniform zinc sulphide (ZnS) thin film formation, the parameters involved and the structural, morphological, optical and electrical properties. Moreover, the mathematical relations have been given for the measurement of various parameters of the prepared thin films.

FUNDING

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest.

COPYRIGHT

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

REFERENCES

https://dx.doi.org/10.4313/TEEM.2004.5.1.001

https://dx.doi.org/10.1149/2.1371702

https://dx.doi.org/10.1149/2.0351414

https://dx.doi.org/10.1007/s11051-006-9137-y

https://dx.doi.org/10.1016/j.tsf.2007.05.031

https://dx.doi.org/10.1098/rspa.1938.0079

https://dx.doi.org/10.1016/j.matchemphys.2010.05.026

https://dx.doi.org/10.22214/ijraset.2018.3263

https://dx.doi.org/10.1016/j.jallcom.2006.08.226

https://dx.doi.org/10.1016/j.apsusc.2004.07.003

https://dx.doi.org/10.1088/0957-4484/20/23/235603

https://dx.doi.org/10.1016/j.proeng.2012.03.009

https://dx.doi.org/10.1016/j.cplett.2008.07.064

https://dx.doi.org/10.1021/jp076047p

https://dx.doi.org/10.1016/j.jallcom.2018.08.178

http://dx.doi.org/10.1063/1.4791074

https://dx.doi.org/10.13188/2475-224X.1000006

Palve, A. M., Deposition of zinc sulfide thin films from Zinc (II) thiourea as single precursor using aerosol assisted chemical vapor deposition technique, *Front Mater.*, https://dx.doi.org/10.3389/fmats.2019.00046

https://dx.doi.org/10.1016/j.tsf.2006.07.035

https://dx.doi.org/10.1002/sia.5018

https://dx.doi.org/10.7726/ajmst.2015.1005

https://dx.doi.org/10.4236/msa.2018.99055

https://dx.doi.org/10.1007/s11664-017-5876-z

https://dx.doi.org/10.1021/cm5002412

https://dx.doi.org/10.1016/S0025-5408(00)00261-0

https://dx.doi.org/10.1016/j.mssp.2013.03.016

https://dx.doi.org/10.1021/nl049169r

https://dx.doi.org/10.1155/2019/7541863

https://dx.doi.org/10.1016/S1001-0742(09)60042-5

https://dx.doi.org/10.1063/1.1562339