Frequency Dependence of Dielectric Properties of Four Cultivars of Apple at Microwave Frequencies

Ravika Vijay1*, Ritu Jain2, Krishna Swaroop Sharma3

1*,2,3Department of Physics, The IIS University, Jaipur, Rajasthan, India.

Received: 01.07.2013 Accepted: 05.02.2014

Abstract

The dielectric constant (\(\varepsilon'\)) and loss factor (\(\varepsilon''\)) of fresh apple of four cultivars, (i) Red delicious apple (ii) Delicious Apple, (iii) Granny Smith apple and (iv) Fuji apple, are measured at room temperature (28 °C) and at four microwave frequencies 3.43 GHz, 7.31 GHz, 9.30 GHz and 14.70 GHz by two point method using microwave benches at C, J, X and Ku bands. It has been observed that the dielectric constant of all the four cultivars decreases with increase in frequency, whereas the loss factor is observed to first increase and then decrease with a minor qualitative difference for the four cultivars.

Key words: Apple; Dielectric Constant; Dielectric loss Factor; Frequency.

1. INTRODUCTION

Dielectric properties directly influence microwave drying characteristics of food products. A knowledge of dielectric properties of different varieties of food is therefore essential in the design and control of microwave drying systems and in determining their efficiency (Feng et al. 2002).

The knowledge of dielectric properties has been used for sensing moisture content in agricultural products and food grains so as to determine their safe storage (Nelson, 1977). Radio frequency and microwave dielectric heating has also been used for various applications like, determination of maturity of fruits, pest control in the crops and fruits (Nelson, 1996a; Nelson, 1996b; Ikediala et al. 2000), seed treatment (Nelson and Nidhi Bhargava et al. 2013), product conditioning (Nelson et al. 1981; Pour et al. 1981; Senter et al. 1984), remote sensing of crop condition (Ulaby and Jedlicka, 1982) and for quality measurement of fruits and crops (Nelson 1980; Nelson et al. 1995).

Interaction between a food product and microwave energy is given by the relative complex permittivity (\(\varepsilon^* = \varepsilon' - j\varepsilon''\)) of the product. The real component of the complex permittivity (\(\varepsilon'\), known as the dielectric constant) is related to energy storage, and the imaginary component (\(\varepsilon''\), the loss factor) is related to the energy dissipation in the dielectric medium.

In connection with quality sensing of fruits and vegetables, the dielectric properties of twenty three kinds of common fresh fruits and vegetables were investigated by Nelson over the frequency range from 200 MHz to 20 GHz at 23 °C by employing a network analyzer and coaxial probe (Nelson, 1983).

Feng et al. measured \(\varepsilon'\) and \(\varepsilon''\) of red delicious apple over a moisture content range of 4% to 87.5% at 22 °C and 60 °C. At high moisture content (>70%) free water dispersion and ionic conduction account for the dielectric behavior observed in them. At medium frequency, the real part of the complex permittivity increases with increasing frequency, whereas the imaginary part first increases and then decreases with a minor qualitative difference for the four cultivars.

*Ravika Vijay Tel. 9314915662 E-mail: ravikavijay@gmail.com
moisture content (~23%), ionic conduction plays a major role. At low moisture content (~4%), bound water accounts for the major dispersion mechanism. The measurements carried out by them were also based on Network Analyzer and a coaxial probe. At higher frequencies of the order of 10 GHz and low moisture content, the major interaction is due to dielectric relaxation of bound water.

Though the dielectric properties of fruits and vegetables determined by employing Network analyzer and coaxial probe form a reliable set of data, however the insight of laboratory experiments is missing in such measurements. Moreover, the equipment required for such measurements is costly and beyond the reach of an institutional laboratory. On the other hand laboratory methods employing a microwave bench and based on the measurement of shift in minima on introducing the dielectric sample in the short circuited waveguide are simple to perform and provide insight of the experiment. The objective of the present research was to study the dielectric properties of four varieties of apples at four microwave frequencies 3.43 GHz, 7.31 GHz, 9.30 GHz and 14.70 GHz by using short-circuited waveguide measurement method, which is a laboratory method and has been successfully used for measurement of dielectric properties of liquids and solids.

2. MATERIALS & METHOD

Samples of four varieties of fresh apple as needed for the present research were obtained from the local grocery stores. The four varieties selected for the present study include the red delicious apple, delicious apple, granny smith apple and fuji apple. Two samples of each variety of apple having different lengths but with the same cross sectional area were required for determination of \(\varepsilon'\) and \(\varepsilon''\) by two point method with Ku, X, J and C band waveguides. Samples for each variety were obtained with the help of sharp edge knife.

2.1 Two Point Method

Two point method is a technique involving measurement of reflection coefficient of a solid placed in a wave guide, backed by a short circuiting conducting plate. The experimental set-up for this method is shown below in Fig. 1. In order to use this method for fruits and vegetables; a specially designed dielectric cell is

![Experimental set-up for determination of dielectric properties of solids by two point method.](image-url)
used to hold the samples. The samples are cut into pieces with cross-sectional area equal to that of the waveguide and length in the range \(\frac{\lambda}{4} < \frac{\lambda}{2} < 3\frac{\lambda}{4} \). The samples so obtained are inserted inside the dielectric cell which is shorted with the help of a metal plate, such that the sample is in contact of the metal plate. This method is suitable for low and medium loss dielectrics and can be adopted for measurement of dielectric properties in solid form (Susher and Fox, 1963).

In two point method, the complex dielectric constant is given by

\[
\varepsilon' = \frac{G_e + \left(\frac{\lambda_e}{2a} \right)^2}{1 + \left(\frac{\lambda_e}{2a} \right)^2}
\]

The transcendental equation provides several solutions for \(\varepsilon' \leq 0 \), which can be found by employing graphs and tables provided for solution of such equations by Hippel or alternatively the problem may be solved by mathematical tool like MATLAB. The experiment is repeated with a different length of the sample and the common root is chosen for evaluation of the admittance. Alternatively we may perform the experiment for a given sample at two different frequencies to obtain the correct root \(\varepsilon' \leq 0 \).

The admittance \(Y_e \) of the material of the sample is given by

\[
Y_e = \left(\frac{X}{\beta l_e} \right)^2 \angle 2(\theta - 90^\circ) = G_e + jS_e
\]

Where \(G_e \) and \(S_e \) are respectively the conductance and susceptibility of the sample.

The values of \(G_e \) and \(S_e \) are obtained by separating eqn (2) into real and imaginary parts, from which the values of \(\varepsilon' \) and \(\varepsilon'' \) can be obtained in the following form:

3. RESULTS & DISCUSSION

The values of dielectric constant and loss factor of four different varieties of apple, viz. red delicious apple, delicious apple, grannsy smith apple and fuji apple, as determined from a microwave bench at room temperature and at frequency 3.43 GHz, 7.31 GHz, 9.30 GHz and 14.70 GHz, by employing two point method are shown below in Table 1. The present results are at room temperature (23°C) and moisture content around 87%. The same may be compared with the values reported by other authors on the basis of measurements taken by them using Network Analyzer and coaxial probe method. Fig. 1 and Fig. 2 show variation in dielectric properties (\(\varepsilon' \) and \(\varepsilon'' \)) with frequency for four cultivars of apple. It is observed from Fig. 1 that \(\varepsilon' \) decreases for all the samples with increase in frequency. Fuji apple has higher values of \(\varepsilon' \) and grannsy smith apple has lower values of \(\varepsilon' \) at all frequencies. It is observed from Fig. 2 that as frequency increase, \(\varepsilon'' \) increase first, reach its peak value and then decreases suddenly.

A fresh apple contains moisture around 88% on the wet basis. For this moisture content, the values of \(\varepsilon' \) for apple have been reported by Nelson (1983) to be 57.0 at 915 MHz and 54.0 at 2.45 GHz whereas the values of \(\varepsilon'' \) reported by him are 8.0 at 915 MHz and 10.0 at 2.45 GHz at 23°C. Feng et al. (2002), have reported
dielectric properties for Red delicious apple at moisture content at 87.5% at 22 °C. The ε’ values reported by him are 56.0 at 915 MHz and 54.5 at 2.45 GHz whereas the ε’’ values of Red Delicious Apple have been reported to be 8.0 and 11.2 at the two frequencies respectively.

Table 1. Dielectric properties (ε’ and ε’’) of four cultivars of apple at four microwave frequencies

<table>
<thead>
<tr>
<th>Sample</th>
<th>Frequency 3.43 GHz</th>
<th>Frequency 7.31 GHz</th>
<th>Frequency 9.30 GHz</th>
<th>Frequency 14.70 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Delicious apple</td>
<td>58.8</td>
<td>52.11</td>
<td>30.35</td>
<td>16.35</td>
</tr>
<tr>
<td>Delicious apple</td>
<td>59.23</td>
<td>55.53</td>
<td>37.90</td>
<td>18.32</td>
</tr>
<tr>
<td>Granny Smith apple</td>
<td>57.06</td>
<td>51.15</td>
<td>29.58</td>
<td>14.61</td>
</tr>
<tr>
<td>Fuji apple</td>
<td>62.28</td>
<td>55.11</td>
<td>37.69</td>
<td>20.47</td>
</tr>
</tbody>
</table>

Fig. 2: Variation in Dielectric Constant of four cultivars of apple with frequency

Fig. 3: Variation in Dielectric loss factor of four cultivars of apple with frequency

4. CONCLUSION

The dielectric properties of fruits can be efficiently measured by laboratory technique. The general trend of the variation of ε’ in this frequency range show a decrease with increase in frequency. In this frequency range ε’ monotonically decreases whereas
\(\varepsilon'' \) has been reported to increase first up to 7 GHz for red delicious and grannysmith apple, 9 GHz for delicious apple and up to 10 GHz for fuji apple where after decreases. The present values of \(\varepsilon' \) and \(\varepsilon'' \) are found to be in good agreement with the values reported by other authors at comparatively lower frequencies, and are also in agreement with the trend described by Nelson. These measurements may be useful in dielectric heating applications and as background material in exploring the dielectric properties of fruits for potential new quality sensing applications.

ACKNOWLEDGMENT

The authors are grateful to the Vice-chancellor, The IIS university, Jaipur for the facilities made available by him, for this work. One of the authors (KSS) also acknowledges the financial assistance provided by the UGC under Major Research Project.

REFERENCES

