PROFORMA FOR BIO-DATA

Name and full correspondence Address:

Dr. S. Shanmugan

Associate Professor, Department of Integrated Research & Discovery -Physics,

Koneru Lakshmaiah Education Foundation

Vaddeswaram, Guntur (Dt)

Andhra Pradesh, India. 522502

Email(s) and contact number(s): s.shanmugam1982@gmail.com,

shanmugan@kluniversity.in and

+91 9565258522, +91 6382027920 (WharApps)

Institution: Koneru Lakshmaiah Education Foundation

Date of Birth: 13.06.1979

Gender (M/F/T): M

Category Gen/SC/ST/OBC: OBC

Whether differently abled (Yes/No): No

Academic Qualification (Undergraduate Onwards): M.Sc, M.Tech., Ph.D., PDF

S.N	Degree	Year	Subject	University/Institution	Percentage
0					ofmarks
1.	B.Sc(Full Time)	2003	Physics	Bharathiyar University	68%
2.	M.Sc (Full Time)	2007	Physics	Bharathidasan University	67%
3.	Ph.D (Full Time)	2013	Physics	Karpagam University	68%
4	PDF (Full Time)	2015	Material Science	Tanta University/Egypt Uppsala University/Sweden	Highly Commented

Ph.D thesis title, Guide's Name, Institute/Organization/University, Year of Award.

Ph.D thesis title : Modeling and performance of single slope single basin solar still

Guide Name : Dr. B. Janarthanan

Institute/Organization

/University	: Karpagam University
Year of Award	: 2013

S.No	Positionsheld	NameoftheInstitute	From	То
	Post-doctoral Research Fellow	Tanta University, Egyptian.	22 April. 2012	18 June 2013
2	Assistant Professor	Dhanalakshmi College of Engineering	22 April. 2012	18 June 2013
	Post-doctoral Research Fellow	Uppsala University, Sweden	15 Aug.2014	10 Dec. 2014
4	Assistant Professor	Veltech Multitech Dr. RR & Dr. SR Engineering College	16. Dec. 2014	10.Feb.2019
5	Assistant Professor	K L University, Vijayawada, Andhra Pradesh	11.Feb.2019	Till date

Work experience (in chronological order).

Professional Recognition/ Award/ Prize/ Certificate, Fellowship received by the

applicant.

S.No	NameofAward	AwardingAgency	Year
1	World Top 2% scientist	Stanford University	2024
2	World Top 2% scientist	Stanford University	2023
3	Best Teacher Award	Department of Physics, Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh.	2023
4	World Top 2% scientist	Stanford University	2022
5	Best Teacher Award	Department of Physics, Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh.	2022
6	Best Teacher Award	Department of Physics, Koneru Lakshmaiah	2021

		Education Foundation, Vijayawada, Andhra	
		Pradesh.	
7	Best Teacher Award	Department of Physics, Veltech Multitech Dr.	2018
		RR & Dr. SR Engineering College in Chennai,	
		Tamilnadu, India	
8	Young Scientist	InDA-2018, Anna University, Trichy Tamilnadu,	2018
	Award	India.	
9	Best Paper Award	ICAMS, VIT, Vellore, Tamilnadu, India.	2017
10	Best Teacher Award	Department of Physics, Veltech Multitech Dr.	2015
		RR & Dr. SR Engineering College in Chennai,	
		Tamilnadu, India	
11	Young Scientist	Karpagam University, Coimbatore, Tamilnadu,	2011
	Award	India.	

Experience as a journal reviewer

Served as a peer reviewer for reputed international journals published by Elsevier and Wiley

- Heat Transfer
- Nano Energy
- Advance Materials
- Renewable and Sustainable Energy Reviews
- Applied Energy
- Journal of Cleaner Production
- Journal of Energy Storage
- Applied Thermal Engineering
- Case Studies in Chemical and Environmental Engineering
- Case Studies in Thermal Engineering
- Ceramics International
- Desalination
- Energy
- Energy Conversion and Management

- Engineering
- International Journal of Thermal Sciences
- Journal of the Taiwan Institute of Chemical Engineers
- Materials Science and Engineering: B
- Materials Today: Proceedings
- Optical Materials
- Optics & Laser Technology
- Solar Energy, etc.,

Publications (List of papers published in SCI Journals, in year wise descending order).

Google Scholar link :<u>https://scholar.google.co.in/citations?user=RoO5KbQAAAAJ&hl=en</u> Research Gate: <u>https://www.researchgate.net/profile/Shanmugan_Sengottain</u> Scopus Link: <u>https://www.scopus.com/authid/detail.uri?authorId=45461423000</u> WOS link: <u>https://www.webofscience.com/wos/woscc/summary/5a052afe-fe2f-4791-99f1-</u> 9125a06f277c-011393095a/relevance/1

Author(s)	Title	Name of Journal	Volume	Page no	Year
Durga Prasad Kotla,	Optimizing solar still performance: A study of	Separation and	359	130584	2025
Venkateswara Rao Anna, S.	TiO2nanofluid derived from Saccharumofficinarum L.	Purification Technology			
Shanmuganet al.		(Impact factor 8.6)			
AmmarElsheikh, Mohamed	Recent advances and future prospects of laser welding	Journal of Materials	35	7417-	2025
A.E. Omer, S. Shanmugan et	technology for polymeric materials: A review	Research and		7440	
al		Technology (Impact			
		factor 6.2)			
DharaniKolli, Sonali Biswas,	Sonali Biswas, Modulating ZnO nanoparticle photoluminescence Ceramics International 51		51	8472-	2025
S.Shanmugan	through Ce3+-Induced defect engineering: A study of	(Impact factor 5.1)		8479	
	microstructural and spectroscopic properties				
Mohamed M.Z. Ahmed, Z.M.	Enhancing solar distiller performance for water	Results in Engineering	25	104360	2025
Omara, S. Shanmugan	desalination: A comparative review of Vertical	(Impact factor 6.0)			
	modifications-based techniques				
GaliSai, Venkateswara Rao	Evaluating the effects of sugarcane juice-mediated	Applied Materials	42	102542	2025
Anna, S. Shanmugan, et al	ZnOnanofluids on solar light activation for enhancing	Today (Impact factor			
	double-slope solar still performance	7.2)			
AS Abdullah, ZM Omara, S.	Leveraging nanoparticles for sustainable water	Results in Engineering	25	104128	2025
Shanmugan	harvesting: A review of solar still technologies	(Impact factor 6.0)			
AS El-Shafay, ÜmitAğbulut, S	Production of oxy-hydrogen with an alkaline	Energy	314	133934	2025
Shanmugan, MS Gad	electrolyzer, and its impacts on engine behaviors fuelled	(Impact factor 9.0)			
	with diesel/waste fish biodiesel mixtures supported by				
	graphene nanoparticles				
Ravinderkumar,	Use of absorber plate built of ZnO/PVC/Bioactivation	Journal of Cleaner	434	139601	2024
S. Shanmugan, et al	modified epoxy nanocomposites to improvement of	Production (Impact			
	double-effect Solar Distiller productivity analyzing the	factor 11.1)			

	Energy, Exergo-environment and Enviro-economical				
MurugesanPalaniappan,	Improving heat retention properties of steeped M-shape	Desalination (Impact	586	117836	2024
S. Shanmugan, et al.	basin solar distillers utilizing paraffin RT50-enhanced	factor 9.9)			
U	silver nanoparticles and Manihotesculenta extracts.	,			
Mohammed Almeshaal,	Improving the thermal efficiency of solar stills:	Separation and	343	127119	2024
S. Shanmugan	Bioactive nano-PCM and Cramer's rule analysis	Purification Technology			
		(Impact factor 8.6)			
GhassanMousa, Ali Basem,	Harnessing fluorescence resonance energy transfer for	Applied Materials	38	102196	2024
S. Shanmugan, et al	improved solar still performance with zinc oxide	Today (Impact factor			
	nanoparticles and activated carbon.	7.2)			
Fadl A. Essa,, Z.M. Omara,	Innovative configurations for spherical solar distillation:	Case Studies in Thermal	59	104489	2024
S. Shanmugan, et al.	Ball rotation and preheating for improved productivity	Engineering (Impact			
		factor 6.268)			
Fadl A. Essa,, Z.M. Omara,	Innovative configurations for spherical solar distillation:	Case Studies in Thermal	59	104489	2024
S. Shanmugan, et al	Ball rotation and preheating for improved productivity	Engineering (Impact			
0		factor 6.268)			
S. Shanmugan, et al	A technical appraisal of solar photovoltaic-integrated	Case Studies in Thermal	54	104032	2024
C I	single slope single basin solar still for simultaneous	Engineering (Impact			
	energy and water generation.	factor 6.268)			
ZM Omara, S. Shanmugan, et	A comprehensive review of nano-enhanced phase	Results in Engineering	22	102088	2024
al	change materials on solar stills with scientometric	(Impact factor 6.0)			
	analysis	(impact factor of)			
N. Premkumar,	Utilizing the lignocellulosic fibers from Pineapple	Materials for Renewable	3	1-15	2024
S.Shanmugan , et al	Crown Leaves extract for enhancing TiO2 interfacial	and Sustainable Energy	5	1 15	
Sionannagan, et al	bonding in dye-sensitized solar cell photoanodes.	(Impact factor 4.8)			
Sethu Narayanan Tamilselvan,	Towards sustainable solar cells: unveiling the latest	-	8	238-257	2024
S. Shanmugan	developments in bio-nano materials for enhanced DSSC	factor 2.9)	0	200 207	
	effciency				
A. Sangeetha, S. Shanmugan,	A review on PCM and nanofluid for various	Desalination (Impact	551	116367	2023
et al.	productivity enhancement methods for double slope	factor 9.9)	001	110007	2020
	solar still: Future challenge and current water issues.				
A. Sangeetha, S. Shanmugan,	Experimental evaluation and thermodynamic Gibbs	Journal of Cleaner	380	135118	2022
et al.	1	Production (Impact factor	500	155110	2022
et al.		11.1)			
	ZnO nanoparticles)			
Ravinder Kumar,	Experimental study on double effect solar distiller	Case Studies in	47	103045	2023
S. Shanmugan et al	using bioactivity nanoparticles with analysis of	Thermal Engineering	47	105045	2023
5. Shannugan et al	thermo-economic and enviro-economical.	(Impact factor 6.268)			
S. Sivakumar,	Intelligent and assisted medicine dispensing machine	Internet of Things	23	100821	2023
S. Shanmugan, et al	for elderly visual impaired people with deep neural	(Impact factor 5.9)	23	100821	2025
5. Shannugan, et al	network fingerprint authentication system.	(impact factor 5.9)			
Davindan Kuman	Performance improvement of single and double effect	Solor Energy (Impost	250	152 162	2022
Ravinder Kumar,		Solar Energy (Impact	259	452-463	2023
S. Shanmugan et al		factor 7.188)			
Dhavani Charman	bioactivation: An experimental analysis.	Environmental 0	20	77000	2022
Bhavani,, Shanmugan ,	Precise Fourier series and fuzzification method	Environmental Science	30	77890-	2023
Sengottaiyan et al	analysis of standardized thermal energy of solar box	and Pollution Research		77904	
	cooker performance: economic and environmental	(Impact factor 5.19)			
	studies.				
Bahaa	Using Direct Solar Energy Conversion in Distillation	Processes (Impact	11(6)	1734	2023

Saleh, SengottiyanShanmug	via Evacuated Solar Tube with and without	factor 3.352)		1	
an. et al	Nanomaterials	140101 5.552)			
S. Shanmugan, et al.	Chemical potential of different phases inside the	Case Studies in	49	103277	2023
5. Shalinugan, et al.	pyramid stepped basin solar still through Gibbs free	Thermal Engineering	49	103277	202.
4 G 41 1 11 1 W	energy	(Impact factor 6.268)	10	101201	202
AS Abdullah, Wissam H	Techniques used to maintain minimum water depth of	Results in Engineering	19	101301	2023
Alawee, S Shanmugan,	solar stills for water desalination-A comparative	(Impact factor 5.12)			
ZM Omara	review.				
A Simon Prabu, V	Performance of solar cooker with evacuated tubes and	Energy Efficiency	16	72	202
Chithambaram, M Anto	photovoltaic panels with phase change materials.	(Impact factor 3.134)			
Bennet, S Shanmugan,					
B Janarthanan					
A Mohandass Gandhi,	SiO ₂ /TiO ₂ nanolayer synergistically trigger thermal	Sustainable Energy	55	101974	2022
S Shanmugan, et al.	absorption inflammatory responses materials for	Technologies and			
	performance improvement of stepped basin solar	Assessments (Impact			
	stillnatural distiller	factor 7.632)			
Waheed Sami Abushanab,	Experimental investigation on surface characteristics	Alexandria	61	7529-	2022
Essam B Moustafa, Mooli	of Ti6Al4V alloy during abrasive water jet machining	Engineering Journal		7539	
Harish, S Shanmugan,	process	(Impact factor 6.626)			
Ammar H Elsheikh					
EmadIsmatGhandourah,	Performance assessment of a novel solar distiller with	Case Studies in	32	101859	2022
A Sangeetha, S Shanmugan ,	a double slope basin covered by coated wick with	Thermal Engineering	02	101000	202
et al.	lanthanum cobalt oxide nanoparticles	(Impact factor 6.268)			
S Pavithra, T Veeramani, S	Revealing prediction of perched cum off-centered	Process Safety and	161	188-200	202
SreeSubha, PJ Sathish Kumar,		Environmental	101	188-200	2022
	wick solar still performance using network based on				
S Shanmugan, et al	optimizer algorithm	Protection (Impact			
		factor 7.926)			
S Bhavani, V Chithambaram,	Laplacian tactic for the prediction of the temperature	Solar Energy (Impact	236	369-382	2022
R Muthucumaraswamy, S	components of solar cooker with logical prediction by	factor 7.188)			
Shanmugan, et al.	fuzzy rules.				
AS Abdullah, ZM Omara,		Alexandria	61	12417-	2022
Fadl A Essa, Umar F Alqsair,	finned absorber, nano- enhanced PCM.	Engineering Journal		12430	
MutabeAljaghtham, Ibrahim		(Impact factor 6.626)			
B Mansir, S.Shanmugan,					
Wissam H Alawee					
Abdulmohsen O Alsaiari, S	Applications of TiO ₂ /Jackfruit peel nanocomposites in	Case Studies in	38	102292.	2022
Shanmugan, et al.	solar still: Experimental analysis and performance	Thermal Engineering			
	evaluation	(Impact factor 6.268)			
Arulraj Simon Prabu,	The performance enhancement of solar cooker	Environmental Science	30	15082-	202
VenkatesanChithambaram,	integrated with photovoltaic module and evacuated	and Pollution Research		15101	
SengottaiyanShanmugan, et	tubes using ZnO/AcalyphaIndica leaf extract: response	(IF 5.19)			
al.	surface study analysis.				
FA Essa, AS Abdullah,	Experimental enhancement of tubular solar still	Case Studies in	29	101705	2022
Wissam H Alawee, A	performance using rotating cylinder, nanoparticles'	Thermal Engineering	_/		
Alarjani, Umar F Alqsair, S	coating, parabolic solar concentrator, and phase	(Impact factor 6.268)			
Shanmugan, et al	change material	(impact factor 0.200)			
Shannugan, et al				1	I
Ammar H Elsheikh, S	Low-cost bilayered structure for improving the	Sustainable Energy	49	101783	202
-	Low-cost bilayered structure for improving the performance of solar stills: Performance/cost analysis	Sustainable Energy Technologies and	49	101783	2022

		7.632)			
Ammar H. Elsheikh, Hitesh	Application of Heat Exchanger in Solar Desalination:	Water (Impact factor	14	852	2022
N. Panchal,	Current Issues and Future Challenges	3.53)		002	2022
ShanmuganSengottain et al.					
KishorkumarSadasivuni,	Ground water treatment using solar radiation-	International Journal	43	2868-	2022
Hitesh Panchal,	vaporization & condensation-techniques by solar	of Ambient Energy		2874	
AnuradhaAwasthi,	desalination system.	(Impact factor 3.63)			
Mohammad Israr, FA Essa, S					
Shanmugan, M Suresh,					
AS Abdullah, ZM Omara,	Enhancing trays solar still performance using wick	Alexandria	61	12417-	2022
Fadl A Essa, Umar F Alqsair,	finned absorber, nano-enhanced PCM	Engineering Journal		12430	
MutabeAljaghtham, Ibrahim		(Impact factor 6.626)			
B Mansir, S Shanmugan,					
Arulraj Simon Prabu,	Experimental investigations on the performance of	Environmental	42	e14028	2022
VenkatesanChithambaram,	solar cooker using nichrome heating coil—	Progress &			
RajamanickamMuthucumaras	Photovoltaic with microcontroller PIC 16F877A	Sustainable Energy			
wamy,		(Impact factor 2.824)			
SengottaiyanShanmugan.					
M Meena, A Kavitha, S	Effect of decorated photoanode of TiO2	Bulletin of Materials	45	1-9.	2022
Karthick, S Pavithra,	nanorods/nanoparticles in dye-sensitized solar cell.	Science (Impact factor			
S Shanmugan.		1.8)			
H. Panchal, K.K. Sadasivuni,	Graphite powder mixed with black paint on the	Desalination (Impact	520	115349	2021
A.A.A. Ahmed, S.S. Hishan,	absorber plate of the solar still to enhance yield: An	factor 9.9)			
M.H. Doranehgard, F.A. Essa,	experimental investigation				
S. Shanmugan, M. Khalid					
P.N. Belkhode, S.D. Shelare,	Performance analysis of roof collector used in the	Sustainable Energy	48	101619	2021
C.N. Sakhale, R. Kumar,	solar updraft tower	Technologies and			
S. Shanmugan et al		Assessments (Impact			
		factor 7.632)			
A.H. Elsheikh, T.	Fine-tuned artificial intelligence model using pigeon	Journal of Materials	15	3622-	2022
Muthuramalingam,	optimizer for prediction of residual stresses during	Research and		3634	
S. Shanmugan, et al.	turning of Inconel 718,	Technology (Impact			
		factor 6.267)			
S. Varadarajan, M.S. Kumar,	A new class single crystal 1-lysine hydrogen chloride	Journal of Materials	32	26351-	2021
S. Shanmugan, et al.	(LLHC) for optoelectronic applications	Science: Materials in		26358	
		Electronics (Impact			
		factor 2.799)			
G. Palanikumar,	Thermal investigation of a solar box-type cooker with	Renewable Energy	178	260-282	2021
S. Shanmugan, et al.	nanocomposite phase change materials using flexible	(Impact factor 8.634)			
	thermography				
A.S. Abdullah, Z.M. Omara,	Improving the performance of trays solar still using	Journal of Energy	40	102782	2021
F.A. Essa, M.M. Younes,	wick corrugated absorber, nano-enhanced phase	Storage (Impact factor			
S. Shanmugan, et al	change material and photovoltaics-powered heaters	8.907)		 	
A.H. Elsheikh, S.	Modeling of the Transient Temperature Field during	Lasers in	8	97-112	2021
Shanmugan, et al	Laser Heating	Manufacturing and			
		Materials Processing			
		(Impact factor 0.498)			
H. Panchal, H. Nurdiyanto,	Experimental investigation on the yield of solar still	Case Studies in	25	100905	2021

K.K. Sadasivuni, S.S. Hishan,	veine menoperase evide nenonentiales spated absorber	Thermal			
	using manganese oxide nanoparticles coated absorber				
F.A. Essa, M. Khalid, S.		Engineering(Impact			
Dharaskar, S. Shanmugan		factor 6.268)			
Ch. Pravallika,	Crystal growth, spectroscopic and antimicrobial	Journal of Materials	32	13917–	2021
S. Shanmugan, et al.	investigations on glycine-doped $ZnSO_4$ -(NH ₄) ₂ SO ₄	Science: Materials in		13925	
	single crystal	Electronics (Impact			
		factor 2.799)			
A. Mohammed, S.	Efficient Artificial Intelligence Forecasting Models for	Process Safety and	149	399-409	2021
Shanmugan et al	COVID-19 Outbreak in Russia and Brazil	Environmental			
		Protection (Impact			
		factor 7.926)			
A.H. Elsheikh, A.I. Saba,	Deep learning-based forecasting model for COVID-19	Process Safety and	149	223-233	2021
M.A. Lu, S. Elaziz, S.	outbreak in Saudi Arabia	Environmental			
Shanmugan, T.		Protection (Impact			
Muthuramalingam		factor 7.926)			
A.M. Gandhi, S. Shanmugan ,	Performance enhancement of stepped basin solar still	Desalination (Impact	502	114926	2021
et al.	based on OSELM with traversal tree for higher energy	factor 9.9)	502	114920	2021
et al.		Tactor 9.9)			
D T 1 1	adaptive control		210	220	
P. Thamizharasu, S.	Revealing an OSELM based on traversal tree for	Solar Energy (Impact	218	320 -	2021
Shanmugan, et al.	higher energy adaptive control using an efficient solar	factor 7.188)		336	
	box cooker				
Hitesh Panchal, Kishor Kumar	Performance analysis of waste brick magnesia as a	Heat Transfer (Impact	50	1–13	2021
Sadasivuni, S. Shanmugan,	storage material in a solar still.	factor 1.855)			
Naimish Pandya					
T. Rajesh Kumar, S.	Experimental Investigation on the Performance of a	Silicon (Impact factor	14	3501-	2021
Shanmugan, et al	Solar Still Using SiO2 Nanoparticles	3.4)		3514	
	/JatrophacurcasL.				
R. Rajasekar, M.	The influence of Cu ₂ ZnSnS ₄ thin films with	Indian Journal of	96	707-716	2021
SenthilKumar, S.	characteristics of treatment conditions on spray	Physics (Impact factor			
Shanmugan, M. Nagarajan	pyrolysis technique for solar cells applications	2.0)			
Ammar H. Elsheikh, Amal I.	Artificial Intelligence for Forecasting the Prevalence	Healthcare (Impact	9	1614	2021
	of COVID-19 Pandemic: An Overview	factor 2.8)	-	1011	2021
Panchal, SengottaiyanShanm		10001 2.0)			
ugan, et al.					
~	A comprehensive reviewit1 -t	A duanaas in	10	207 212	2021
A.H. Elsheikh, S.	1	Advances in	10	287–312	2021
Shanmugan, et al.	turning	Manufacturing (Impact			
		factor 5.2)		1	
M. Laad, R. Datkhile, S.	Synthesis and Characterization of Powder Silica: A	Silicon (Impact factor	14	1123-	2021
M. Laad, R. Datkhile, S. Shanmugan	Synthesis and Characterization of Powder Silica: A Judicious Recycling of the Natural Ceramic Rice Husk		14	1123– 1132	2021

Detail of patents.

S.N	PatentTitle	NameofApplicant(s)	PatentNo.	AwardDat	Agency/	Status
0				e	Country	
1	Double-Slope Solar Still with Zea Mays-Activated carbon and ZnO for Freshwater Production	A. Sangeetha, S. Shanmugan	In Progress	03.02.2025	India	Grant – Applied -

2	Double-Slope Solar Still with Zea Mays-Activated carbon and ZnO for Freshwater	A.Sangeetha, S. Shanmugan	202441096552	13/12/2024	India	Publishe d
	Production					
3	Design and development of	Dr. S. Suresh, Mr. Shubham	202341068585	27/10/2023	India	Published
	steeped m-shape basin single	Avinash Deshmukh,				
	slope solar still using bio-nano- phase change mat	Dr. S. Shanmugan				
4	A novel nanocomposite double	Dr. S. Shanmugan, A.	202341011596	17/03/2023	India	Published
	slope U shape stepped basin	Sangeetha, Dr. G. Sunita				
	solar still	Sundari, Wallaaldin Eltayeb				
5	Synthesis of Superhydrophobic	Dr. Y. Raja Jaya Rao, Dr.	202241047698	23/09/2022	India	Published
	Silica Nanoparticles and	SrinivasGanganagunta, Dr.				
	method for preparing Non-stick	Abhay Kumar, Dr. V. B.				
	paint by using same	Sreedhar, Dr.				
		NandkishorNilkanthPadole,				
		Dr. NitinNilkanthPadole, Dr.				
		S. Shanmugan,				
6	A novel High Silica glass	Dr. ChargarlamudiKavitha,	202241042300	19/08/2022	India	Published
	composition and method thereof	Dr. K. Suresh, Dr. Madhu A,				
		Dr. Y. Anantha Lakshmi, Dr.				
		S. Shanmugan				
7	METHOD FOR FACILE	Dr. G. Murugadoss,	202141050557	19/11/2021	India	Published
	SYNTHESIZING	Dr.K.THIRUPPATHI,				
	HETEROSTRUCTURE NIO-	Dr.C.MEGANATHAN,				
	SNO2 NANOCOMPOSITE	Dr.S.SHANMUGAN,				
	FOR SELECTIVE	Dr.V.CHITHAMBARAM				
	ELECTROCHEMICAL					
	DETERMINATION					
	CYSTEINE					
8	ENTROPY BASED IMAGE	Mrs.K.Saraswathi,	202041028523	17/07/2020	India	Published
	RETRIEVAL METHOD FOR	Dr.R.Reka, Dr. Anil Lamba,				
	FASTER RETRIEVING OF	Dr. S. Shanmugan, Dr. S. R.				
	IMAGES	BoselinPrabhu				

Books/Reports/Chapters/General articles etc.

S.No	Title	Author'sName	Publisher	YearofPublication
1	Polymer nanocomposite-based additively	A. Sangeetha,	Elsevier	2025
	manufactured smart materials and	S. Shanmugan,		
	structures	V. Rajkumar		
2	Additively manufactured smart materials	S. Shanmugan,	Elsevier	2025

	and structures in membrane technology	V. Rajkumar		
3	2D MXene and MBenes Innovation in	A. Sangeetha,	IGI Global	2025
	Sustainable Recycling Technologies for	S. Shanmugan		
	Metal Ion Batteries Completed About the			
	Contributors			
4	Analysis of Defects in Microscopic Images of	S.N.Kumar, M.Nagarajan,	Advanced	2024
	Hetero Epitaxial Growth Technique Using	S.Shanmugan	Technologies for	
	Fuzzy K Means Clustering Algorithm		Science and	
			Engineering	
5	Significance of Research Design	R.M.Aharsvel, S.Brindha,	Adam's Book	2024
5	Significance of Research Design	S.Shanmugan	Company	2024
		3		2024
6	Degrowth: Empirical Research and	S.	Adam's Book	2024
	Philosophical Implications	Shanmugan, G. Bharathsury	Company	
		a, S.Ravichandran		
7	Impact of Activated Carbon on TiO ₂ Based	Sethu Narayanan	KripaDrishtiPublia	2023
	Solar Cell Sensitized by Dyes Extracted	Tamilselvan, S.	cations	
	from Celosia (Cockscombs)	Shanmugan, S.		
		Ravichandran		
8	Development of 3 D Concrete Printing	S. Shanmugan, T.	Wiley Online	2023
	Using Additive Manufacturing Processes	Sandhyarani, S. Palani	Library	
	for Construction and Building Industry			
9	Performance of Stepped Bar Plate-Coated	S. Shanmugan, F.A. Essa,	Wiley Online	2021
	Nanolayer of a Box Solar Cooker Control	J. Nagaraj, Shilpa Itnal.	Library	
	Based on Adaptive Tree Traversal Energy			
	and OSELM			
10	Productivity enhancement of solar still by	S. Shanmugan	Water Chemistry	2019
	PCM and Nanoparticles miscellaneous			
	basin absorbing materials,			
11	Finite Element Method - Simulation,	S. Shanmugan	Intech Open	2017
	Numerical Analysis and Solution			
	Techniques			

R&D Project Details:

S.	Sanction order No.	Name of	Amount	Year	Remarks
No.		Funding	Sanctioned		
		Agency	(Rs.)		
1	DST/IC/RSF/2025/963	DST	92 Lakhs	2025	Progress
2	DST/IC/SL/CFP/2024/157	DST	29 Lakhs	2025	On going
3	TPN / 118379	DST	28 Lakhs	2025	Progress
4	DST/CEST/NEST/2024/2024/113	DST	56 Lakhs	2025	On going
5	SSY/2024/001736	SERB-	2,00,000	2024	Completed
		ANRF			_
6	DST/CD/PS-09/2019/67	DST	6 Lakhs	2020	Completed
7	1(SR/FST/PS -1/ 2018/35	DST-	1.10 Cores	2018	Completed
		FIRST			_
		Level			

Synopsis of the scientific/ curricular path:

(i) Synopsis of Scientific/Curricular Path: Solar Materials-Based Solar Thermal Applications

My research at Koneru Lakshmaiah Education Foundation over the past five years has been dedicated to advancing solar materials for enhanced thermal applications. This journey began with exploring novel nanocomposites, particularly Phase Transition Polymer (PTP) nanocomposites, to improve heat storage and transfer in solar stills. I've focused on the meticulous synthesis and characterization of materials with superior thermal conductivity and absorption properties, utilizing experimental studies to construct and test customized solar still designs. My work combines fundamental and applied physics, aiming to optimize solar materials for energy efficiency and sustainability. This has involved significant contributions to understanding various solar materials designed to optimize absorption and conversion of solar energy. I've explored advanced composites, PCMs, and nanomaterials to enhance thermal energy storage and transfer in systems like solar water heaters, distillation units, and concentrated solar power systems. A notable aspect is the integration of aluminum can configurations (ACs) and M-shaped absorber plates in solar distillation, which has shown improved heat transfer and efficiency. In collaboration with colleagues and students, I've developed methods to optimize surface area and thermal conductivity in solar collectors, maximizing energy output while minimizing costs. We've also explored different AC configurations to enhance thermal energy storage and retrieval, addressing the challenge of improving solar system efficiency for wider adoption. My work also evaluates the environmental and economic impacts of solar thermal technologies, conducting cost-benefit analyses and performance simulations to determine optimal deployment strategies for various

sectors. In the classroom, I share research findings and develop curricula on renewable energy, solar technologies, and materials science. I encourage hands-on projects and experiments, fostering innovation in addressing global energy challenges. Despite funding limitations, I've maintained research momentum, collaborating nationally and internationally.

Analytical modeling, using techniques like Cramer's rule, has been crucial in understanding and optimizing temperature profiles, improving system performance. This research focuses on achieving higher distillate outputs and improved thermal efficiencies, even in challenging conditions like nighttime operation. Economic viability is also addressed, translating lab findings into practical water purification applications. My ultimate goal is to contribute to sustainable solutions for water scarcity through innovative material design and system optimization, leveraging solar energy.

(ii) Synopsis of Scientific/Curricular Path: Solar Materials-Based Solar Thermal Applications with Artificial Intelligence and Machine Learning

My research has focused on integrating AI/ML with solar materials for enhanced thermal applications. Initially, I developed advanced materials like PCMs and nanomaterials to improve heat storage and transfer in solar systems. Recognizing AI's potential, I began applying ML techniques to optimize system performance and predict thermal efficiencies. AI algorithms now predict heat transfer behavior, optimize system configurations, and automate material design. Real-time monitoring using AI/ML allows for dynamic adjustments based on environmental conditions, enhancing energy collection and storage. ML-driven fault detection and diagnostics further improve system reliability and sustainability. In education, I've integrated AI/ML concepts into renewable energy curricula, using real-world case studies and practical projects. Students build and test ML models applied to solar thermal systems. Despite challenges, collaboration has been crucial in advancing this work. I aim to continue exploring AI/ML applications in solar energy, developing intelligent systems that improve efficiency and accessibility. This research contributes to the global transition towards sustainable energy solutions, leveraging AI to create economically viable and environmentally friendly solar thermal technologies.

(iii) Synopsis of Scientific/Curricular Path: Green and Sustainable Science and Engineering

My research at Koneru Lakshmaiah University (KLU) explores innovative solutions in solar thermal technologies, bridging material science, environmental engineering, and renewable energy. This involves developing and testing prototypes for solar collectors, stills, and concentrated power systems, utilizing advanced materials like nanomaterials and PCMs to enhance efficiency. A crucial aspect is applying sustainability principles in engineering design, employing life cycle analysis and environmental impact assessments. This ensures the viability of green technologies for large-scale adoption, especially in developing regions. I contribute to curriculum development, designing courses that integrate sustainable engineering, renewable energy, and environmental policy. Hands-on projects and case studies encourage students to critically engage with sustainability challenges. Mentoring students in research projects further extends this impact. I emphasize interdisciplinary collaboration, encouraging students to think beyond traditional boundaries and engage with environmental science, policy, and economics. Looking forward, I am dedicated to developing next-generation renewable energy technologies, fostering a deeper understanding of sustainable practices, and preparing students to lead the transition to a low-carbon world.

(iv) Synopsis of Scientific/Curricular Path: Solar Materials-Based Solar Thermal Applications, Artificial Intelligence, Machine Learning, and Novel Materials

Initially, I focused on developing advanced materials like composites, Phase Change Materials (PCMs), and nanomaterials to enhance heat absorption and storage in solar systems, crucial for continuous energy supply. Integrating AI/ML has transformed traditional empirical optimization, enabling data-driven modeling and prediction of system performance. ML algorithms analyze vast datasets to determine optimal operating conditions, maximizing energy output and minimizing losses. AI has also accelerated material discovery by rapidly analyzing data to identify promising candidates for solar thermal applications. For instance, AI models predicted thermal conductivity and phase change behavior of novel composites, guiding experimental synthesis. Real-time monitoring and control using AI/ML further enhance system reliability and efficiency. Sensors collect operational data, which ML algorithms process to automatically adjust parameters, optimizing performance under diverse conditions. Beyond research, I've contributed to curriculum development, designing courses that integrate solar energy, novel materials, and AI/ML. These courses combine theory with practical projects, preparing students to apply AI in real-world solar thermal systems. Looking ahead, I am committed to pushing the boundaries of solar thermal efficiency. By leveraging AI/ML, we can create smarter, more sustainable systems, crucial for meeting global energy demands in an environmentally and economically viable manner.

Major activities & achievements:

Dr. S. Shanmugan is working as Research Centre for Solar Energy, Associate Professor in Department of Integrated Research and Discovery; Physics at Koneru Lakshmaiah Education Foundation, Vijayawada, India. A doctorate in Physics with more than 16.7 years of teaching (12.7) and research experience (2- PDF - Egypt - Tanta University and Sweden – Uppsala University), he specializes in heat Nano-material Science. Here searches focuses on synthesis and characterization of low cost and high absorption performance of Bio-Composite materials (Green synthesis) specifically TiO₂ and SiO₂nanocomposities for engineering applications. He has several research papers (230 SCI & Scopus, 5415 citations, h-index: 40, i10 - 93) published in reputed international journals and also Patent in 10 and completed at 2crous in DST funding projects. He has also authored a book, water chemistry contributed chapters on TiO₂ composites and Smart Materials in books published by Springer & Elsevier Publishing. He is also serving as editorial board member/reviewer for some of the reputed international journals. He is a Ph. D supervisor (16mems) and also guided several Undergraduate (30mems) and Post Graduate Projects (15mems). His responsibilities mainly include establishing academic and research collaborations with universities abroad, faculty and Student mobility through Global Immersion Programmer, promoting joint research projects and publications with international partners.

As a potential ECEB member, my goals include:

- Promoting a culture of ethical research and academic integrity
- Assisting in the review of academic and research proposals for quality and compliance
- Supporting policy formulation for enhancing research standards
- Encouraging interdisciplinary collaboration and student mentoring

With a balanced perspective as both a researcher and academic contributor, I aim to uphold the values and responsibilities of the ECEB, ensuring transparency, ethical rigor, and academic excellence.

As a potential member of the Chemical Engineering Journal (ECEB), my goals include:

I aim to contribute significantly to the advancement of chemical engineering by publishing high-quality research that pushes the boundaries of current knowledge. My work focuses on innovative solutions in areas such as renewable energy, sustainable processes, and advanced materials, which are crucial for addressing contemporary global challenges. By disseminating my research through the journal, I hope to foster discussions that stimulate further exploration in these critical fields. Chemical engineering often overlaps with various scientific disciplines, and my goal is to encourage greater interdisciplinary collaboration. Whether through co-authored research or collaborative initiatives, I aim to leverage diverse expertise from fields like materials science, artificial intelligence, and environmental engineering to foster holistic approaches to complex problems. One of my core objectives is to promote the application of sustainable practices within the field of chemical engineering. Through my work in green and sustainable technologies, particularly in energy production and waste management, I aspire to develop and share solutions that reduce environmental impact and enhance resource efficiency. The Chemical Engineering Journal provides an excellent platform to highlight research focused on sustainability in chemical processes. As a member, I would also like to take an active role in mentoring emerging researchers in the field of chemical engineering. By providing guidance on research methodology, publication strategies, and the peer review process, I hope to help the next generation of chemical engineers grow professionally. I see this as an opportunity to nurture talent and cultivate a research-driven culture within the chemical engineering community. Through my involvement, I seek to elevate the visibility and impact of chemical engineering research. The global challenges we face require engineering solutions that are both innovative and scalable. By working with fellow experts and contributing to the journal, I aim to ensure that research in this area reaches a broader audience, including industries and policymakers, thereby influencing real-world practices and decisions. Another key goal is to promote the latest innovations in chemical engineering, particularly those that integrate advanced technologies like artificial intelligence, machine learning, and novel material design. I am passionate about being at the forefront of technological advancements that drive efficiencies in industrial processes and lead to the development of cleaner, more sustainable systems.

Through my active engagement in the Chemical Engineering Journal, I aspire to contribute meaningfully to the scientific community, advance the application of chemical engineering to solve global issues, and inspire a new era of research that prioritizes sustainability, collaboration, and innovation.