

J. Environ. Nanotechnol. Volume 3, No.3 pp. 16-19 ISSN (Print): 2279-0748 ISSN (Online): 2319-5541

doi: 10.13074/jent.2014.09.142084

MEASUREMENT OF ²¹⁰Po AND ²¹⁰Pb ACTIVITY CONCENTRATION IN ROCK SAMPLES OF WESTERN GHATS, TAMIL NADU, INDIA

J. Eugin shaji¹, C. Kannan^{2*} and M. Feroz Khan³

^{1,2}Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, TN, India ³Department of Advanced Zoology and Biotechnology, Sadakathullah Appa College, Tirunelveli, TN, India

Abstract

A study on radiation level and radionuclide distribution such as (210 po and 210 pb) were determined in rock samples collected from the lower hills of western ghats, kanyakumari district. The activities are counted using Zns(Ag) alpha counter. The activity of 210 Pb was estimated through 210 Po by allowing the 210 Po plated solution for a period of 12 months to build up 210 Po from 210 Pb. The concentration of 210 Po in rock samples ranged from 8.2 ± 0.3 to 36.2 ± 1.4 Bq/Kg. Mean while, 210 Pb ranged between 10.3 ± 0.4 to 41.6 ± 1.8 Bq/Kg. The levels of 210 Po and 210 Pb in the study region was found less and would not pose any significant radiological impact on the environment.

Keywords: Rock; Distribution; activity; environment; Western Ghats.

1. INTRODUCTION

The radionuclides of 210Po and 210Pb are among the most important natural radionuclides in the uranium series from a radiological point of view. Both ²¹⁰Po and ²¹⁰Pb are of great concern for reasons mainly because of their large contribution to the natural radiation dose received by many species. The ²¹⁰Po, an alpha emitter with a half life of 138.4 days and ²¹⁰Pb, a beta emitter with a relatively long half – life of 22 years, are found in varying concentrations in rock. The main route of the radionuclides intake by human body inhalation, injection. The injection, ie., the intake of radionuclides by means of consumption of food, is usually the most important route by which these radionuclides enter the human organs. The alpha emitter ²¹⁰Po casues considerably greater biological damage compared to the beta emitter ²¹⁰Pb. It is estimated that the equivalent dose resulting from a single disintegration of ²¹⁰Po is thousand times greater than ²¹⁰Pb decay (Parfenov et al., 1974). The major contribution to radiation exposure to mankind comes from natural sources. The include external sources such as cosmic rays and terrestrial radiation originating largely from ²³⁸U and ²³²Th and their progeny. The radionuclides ²¹⁰Po and ²¹⁰Pb are the final radioactive

* C. Kannan Tel.: +919443507036

E-mail: chellapandiankannan@gmail.com

members of ²³⁸U series and are widely present in the environment, contributing about 8% of the natural radiation exposure to humans. Numerous studies have utilized ²¹⁰Pb data at choronometers for sediment accumulation for mixing in lakes, estuarine, marsh, and coastal areas, since they provide a reliable method of dating over the last 100-150 years. As applied to limnology, the data provide a measurement for evaluation of accelerated eutrophication (Krishnaswami et al., 1971). The sediments contain a repository of valuable historical information on temporal changes of population growth and industrial development, but significantly fewer studies provide reliable radiochemical datas due to difficulties on obtaining ²¹⁰Pb concentration data that are above the detection limit of the technique utilized and that are not affected by sediment mixing (Ravichandran et al. 1995). We are now reporting the results from the lower hills of western ghats. radioactivity studies remain fragmentary at this site and hence the present investigation was launched to determine the activity of ²¹⁰Po and ²¹⁰Pb.

2. MATERIALS AND METHODS

2.1 Study area

In the present study rock samples were collected from lower hills of western ghats, Kanyakumari district.

The lithology of the study site consists largely of grey wackes in the upstream catchment area, Where as tonality geneisses occur in the down stream segment. Patches of limestone and ultramofics are the minor rock types. The principal rock types found in the drainage basin are pre- Cambrian gneisses, granites, granite gneisses, phyllites, quartzite and chlorite schists and charnockites.

2.2 Sample collection

The sampling stations were identified along western ghats. The rock samples were collected from lower hills following standard procedure. The sampling stations are shown in fig,1

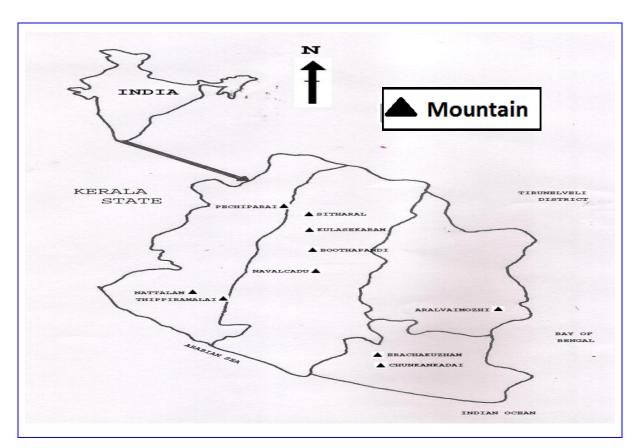


Fig. 1: Map showing the study area

2.3 Sample processing and activity measurement

The rock sample was removing the extraneous material like plant material and transferred to porcelain tray and dried in an oven at 110° C till constant dry weight is obtained. The moisture content was noted. The dried sample was then powdered and stored in polythene bags. The electro chemical deposition method was employed for determination of ²¹⁰Po activity. The dried samples was leached with 4M HNO₃ and then organic matter present in the sample were destroyed by digestion by adding 3:1 mixture of HNO₃ and HClO₄ in small increment white residue appears. Each sample was converted to 1M HCl medium and ²¹⁰Po in the solution was deposited on a silver disc using magnetic stirrer at 97°C for 6 h. The silver disc was then washed with distilled water, rinsed with alcohol, dried

under infra red lamp and then alpha activity was counted using ZnS (Ag) alpha counter of 30% efficiency. The percentage of recovery of polonium was found to be 90%. The percentage of recovery was calculated using ²⁰⁹Po as tracer. The percentage of recovery has been taken into account while calculating the activity of ²¹⁰Po.

The activity of ²¹⁰Pb was estimated through ²¹⁰Po by allowing the ²¹⁰Po plated solution for a period of 12 months to build-up ²¹⁰Po from ²¹⁰Pb.

3. RESULTS & DISSCUSSIONS

The results of ^{210}Po and ^{210}Pb activity in rock samples are mentioned in table 1. The ^{210}Po activity of rock samples ranges between 8.2 \pm 0.3 to 36.2 \pm 1.4

Bq/Kg with mean value 20.3 ± 4.1 Bq/Kg. The highest activity was found in the rock samples of thippiramalai near Karungal. The minimum activity was found in the rock samples of sitharal near pechipparai. The present values are comparable with values reported for HBR, Kerala and Ullal region, Karnataka. and 210 Pb activity

of rock samples ranges between 41.6 \pm 1.8 to10.3 \pm 0.4Bq/Kg With mean value 23.4 \pm 4.6 Bq/Kg. The mean activity ratio of the 210 Po and 210 Pb in rock sample is 0.8. Variation between 210 Po and 210 Pb activity concentration in rock samples are shown in fig.1.

Table 1. ²¹⁰ Po and ²¹⁰ Pb act	ctivity in rock samples
--	-------------------------

S.no	Rock/sampling stations	Activity concentration in rock in Bq/Kg		Activity ratio
		²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po/ ²¹⁰ Pb
1.	Chunkankadai	31.2±1.3	33.6±1.5	0.9
2.	Aralvaimozhi	23.3±0.8	25.2±0.9	0.9
3.	Bhudhappandi	10.1±0.7	20.3±0.8	0.5
4.	Kulasekaram	9.2±0.6	12.3±0.7	0.7
5.	Nvalkadu	11.3±0.9	13.2±0.8	0.8
6.	Nattalam	36.2±1.4	39.3±1.3	0.9
7.	Thippiramalai	38.3±1.6	41.6±1.8	0.9
8.	Sitharal	8.2±0.3	10.3±0.4	0.8
9.	Erachakuzham	18.1±0.2	19.4±0.7	0.9
10.	pechiparai	17.2±0.6	19.6±0.6	0.8
ĺ				

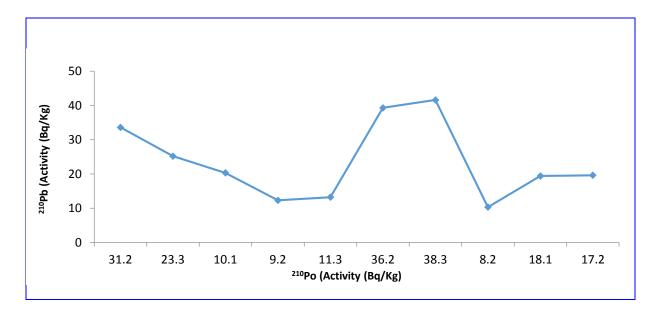


Fig. 2: Correlation between ²¹⁰Po and ²¹⁰Pb activity in rock samples

4. CONCLUSION

The activity concentration of ²¹⁰Po is high compared to the activity concentration of ²¹⁰Pb in the western ghats. These activity levels are low when compare the international guidelines. A good correlation exists between the activity concentration of ²¹⁰Po and ²¹⁰Pb in rock samples in the western gahts.

REFERENCES

- Parfenov, Y. D., Po-210 in the environment and in the human organism Atomic Energy Review, 12, 75-143 (1974).
- K. B, R. Shankar. M. M. Sarin, B. R.Manjunatha, J. Environ. Radioact., 57, 21-33 (2001). doi:10.1016/S0265-931X(00)00215-0

- Kidwai, R. M., Nair, R. R. and Hashinmi, N. H., J. GSI. 22, 32-36 (1981).
- Eakins, J. D., Morrison RT A new procedure for the determination of lead -210 in lake and marine sediments. Int J Appl Radiat Isot 29, 531-536(1978).

doi:10.1016/0020-708X(78)90161-8

- Krishnaswami. S., Lal. D., Martin. J. M. and Meybeck M Geochronology of lake sediments, Earth planet Sci Lett, 11, 407-414(1971). doi:10.1016/0012-821X(71)90202-0
- Ravichandran, M., Baskaran, M. and Santschi, P. H., Bianchi TS Geochronology of sediments in the sabine-Neches estuary, Texas, USA. Chem Geol 125, 291-306(1995). doi:10.1016/0009-2541(95)00082-W