
Journal of 
Environmental 

Research Article Nanotechnology 

J. Environ. Nanotechnol.,Vol. 13(4), 417-427 (2024) 
https://doi.org/10.13074/jent.2024.12.2441054 

Neural Network-based Prediction and Optimization of 
Performance in Single Slope Solar Stills Enhanced with 
Nanoparticles for Improved Water Production 

D. Nisha1*, V. Stanlin Prija2, W. V. Sherlin Sherly3 and P. Girija2 
1Department of Information Technology, SRM Valliammai Engineering College, Kattankulathur, TN, India 
2Department of Computer Science and Engineering, Vel Tech High Tech Dr. Rangarajan Dr.Sakunthala Engineering College, Chennai, TN, India 
3Department of Artificial Intelligence & Data Science, Jeppiaar Institute of Technology, Kunnam, Sunguvarchathram, Chennai, TN, India 
Received: 19.09.2024        Accepted: 25.12.2024        Published: 30.12.2024 
*davidnisha21@gmail.com 

ABSTRACT 

This research uses a neural network technique to anticipate and optimize temperature and production factors in a 

single-slope solar still. In addition to comparable productivity measures and actual and expected temperatures of the glass 

and water, the experimental dataset contains changes in sun intensity, water depth, and the proportion and type of 

nanoparticles (TiO2 and CuO). The goal is to enhance the knowledge and performance of solar stills essential to sustainable 

freshwater production. Based on input characteristics, a neural network model was developed to forecast water temperature, 

glass temperature, and Productivity. By contrasting expected results with actual measurements, the model's performance was 

assessed and shown to have good predictive capabilities. The results showed that the kind and concentration of nanoparticles 

and sun intensity substantially impacted thermal behavior and Productivity. Productivity levels, for example, varied greatly, 

from as low as 0.3 kg/m²h with CuO nanoparticles to 2.75 kg/m²h with TiO2 under some circumstances. RNN, LSTM, and 

CNN models were tested, with RNN consistently providing the most accurate predictions across all datasets, particularly for 

Productivity, glass temperature, and water temperature. Along with precise forecasts, optimization methods were used to 

identify the ideal operating settings for optimum output. This method promotes more effective and environmentally friendly 

desalination solutions by offering insight into solar still design and operation enhancements. The results may guide future 

experimental configurations and practical applications for increased water production. 

Keywords: Neural network; Solar still; Productivity; Nanoparticles; Optimization; RNN; LSTM; CNN. 

1. INTRODUCTION

Neural network models have become very 

effective tools for forecasting and maximizing the 

performance of single-slope solar stills essential for 

sustainable freshwater production. The main goal of this 

study is to analyze the effects of sun intensity, water 

depth, and nanoparticles on the thermal behavior and 

output of solar stills. The paper proposes ideal 

circumstances for optimizing water production and 

emphasizes the higher predictive power of RNN models. 

Moustafa et al. (2022) Studies have 

demonstrated that adding an electrical heater run by solar 

photovoltaic panels significantly increased tubular solar 

stills' thermal efficiency and water production. 

Furthermore, it has been shown that using the humpback 

whale optimizer to improve conventional artificial neural 

network models produces better prediction accuracy than 

solo models and models optimized using particle swarm 

techniques.Nazari et al. (2020), the performance of solar 

stills has been modeled by recent research utilizing 

artificial neural networks, emphasizing variables like 

water productivity, energy efficiency, and exergy 

efficiency. It has been shown that integrating 

optimization methods, including the Imperialist 

Competition Algorithm, dramatically improves the 

predictive accuracy of ANN models, increasing the 

effectiveness of forecasts about the performance of solar 

stills (Sharshir et al. 2022). Recent studies have 

investigated using innovative materials, such as cobalt 

oxide nanoparticles and linen wicks, to enhance water 

evaporation and production rates and to improve the 

performance of stepped double-slope solar stills. Deep 

neural networks and other machine learning models have 

also been used to forecast the performance of solar stills; 

these models have shown better accuracy than previous 

methods like decision trees and support vector 

regression. 

Essa et al. (2020) new methods such as the 

Harris Hawks Optimizer, which simulates natural 

hunting behaviour to adjust model parameters, have been 

utilized to optimize artificial neural networks in recent 

advances in solar still production prediction. The Harris 

Hawk's optimizer dramatically improves prediction 

accuracy compared to more conventional models like 

support vector machines and regular neural networks, 

particularly for active solar stills connected with other 

systems like condensers.Abdullah et al. (2024) a viable 

https://crossmark.crossref.org/dialog?doi=10.13074/jent.2024.12.2441054&domain=pdf&date_stamp=2024-12-30
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substitute for conventional experimental methods, which 

are sometimes expensive and time-consuming, is 

incorporating artificial intelligence techniques in solar 

still performance prediction, as highlighted in recent 

work. Numerous machine learning techniques have been 

investigated to forecast the performance of solar stills, 

emphasizing their fundamental ideas, benefits, 

drawbacks, and accuracy as measured by metrics such as 

root mean square error.Elsheikh et al. (2021) long short-

term memory (LSTM) neural networks have been used in 

recent research to estimate the freshwater production of 

solar stills, showing better forecasting accuracy than 

more conventional techniques such as autoregressive 

integrated moving averages. Compared to traditional 

solar stills, it has been demonstrated that sophisticated 

designs, such as copper corrugated absorber plates in 

stepped solar stills, significantly improve thermal 

performance and water production(Victor et al. 2022). 

Recent research has concentrated on improving solar still 

performance by utilizing cutting-edge machine learning 

approaches, including particle swarm optimization and 

deep neural networks, to increase water production. It has 

been shown that using innovative designs, such as spiral 

and straight tube solar water collectors, enhances the 

effectiveness of solar stills in desalination procedures; 

studies reveal significant gains in performance when 

compared to traditional techniques. 

Yuvaperiyasamy et al. (2023) examined how 

adding fins and sun ponds to single basin solar stills 

(SBSS) may improve their thermal efficiency and 

increase their daily water collection. According to 

experimental findings, adding fins and finned ponds to 

solar stills may increase water output by up to 52% 

compared to traditional SBSS (Senthilkumar et al. 2024). 

Particle swarm optimizationand fuzzy logic interfaces 

have been used in this research to improve solar still 

parameters, emphasizing phase transition materials such 

as silver nanoparticles in paraffin wax and environmental 

factors. Under various circumstances, the Productivity of 

pyramid solar stills has been increased by integrating 

TOPSIS and Taguchi's L9 orthogonal array. 

Migaybil and Gopaluni (2024) suggested that 

transfer learning may improve the prediction accuracy of 

solar desalination models, particularly when ANN 

regression is used to anticipate water production. 

Comparative studies demonstrate that pre-trained ANN 

models perform better than conventional models like 

MLR, exhibiting lower residuals and increased forecast 

reliability for freshwater production in solar stills. 

Mashaly and Alazba (2016) have shown that 

solar still output can be accurately predicted by artificial 

neural networks, with models that include operational 

and climatic factors showing exceptionally high 

accuracy. When it comes to solar still desalination of 

agricultural drainage water (ADW), a comparative study 

shows that ANN works better than multiple linear 

regression (MLR), with a coefficient of determination 

above 0.96 and relative errors within ±10%. The 

efficiency of combining multi-layer perceptions with 

sophisticated optimization algorithms for forecasting 

solar still production has been shown byAlsaiari et al. 

(2023). The MLP-ARO model had much-reduced root 

mean square deviation values across several solar still 

designs, demonstrating improved accuracy in research 

comparing MLP models optimized using gradient 

descent, PSO, GA, and an artificial rabbit’s optimizer. 

Abujazar et al. (2018)have shown that cascaded 

forward neural networks are more successful than linear 

and standard regression models for forecasting the 

Productivity of stepped solar still systems. Assessments 

of statistical metrics including RMSE, MAPE, and MBE 

confirm the increased accuracy of CFNN models in 

simulating solar still performance.Shanmugan et al. 

(2024)acknowledged that combining solar photovoltaic 

(PV) technology with solar stills successfully increases 

freshwater output by using both thermal and electrical 

energy for improved condensation and evaporation 

processes. According to research, integrating solar PV 

helps achieve national development goals by addressing 

water constraints and fostering sustainable energy 

production. 

Hemmat Esfe et al. (2021)have investigated 

using thermoelectric cooling devices to improve single-

slope solar stills, demonstrating significant gains in 

freshwater output. The possibility of geometric 

optimization and TEC integration for increased 

efficiency is shown by simulations that show that 

integrating a TEC system may enhance the freshwater 

production rate by 6.8%. Still, a 50% increase in length 

lowers output by around 10%.Alwan et al. (2024)despite 

being a sustainable technique for desalinating brackish 

water, research has shown that solar distillation has 

productivity issues. It has been discovered that several 

design changes, including varying the water depth, the 

thickness of the glass cover, and adding devices like a 

revolving drum, significantly improve the performance 

of solar stills and may increase water output by 200–

300%. 

According to experimental research, 

Yuvaperiyasamy et al. (2023), including circular fins, 

water depth, and intake temperature all significantly 

impact freshwater production in pyramid solar stills. The 

findings showed that adding fins and raising the water 

depth and temperature significantly increased freshwater 

output; the most significant rise was seen at a water depth 

of 2 cm and an input temperature of 50ºC.Based on study 



D. Nisha et al. / J. Environ. Nanotechnol., Vol. 13(4), 417-427 (2024) 

419 

findings, Yuvaperiyasamy et al. (2023), adjusting 

operating factors such as insulation thickness, depth, 

water intake temperature, and solar intensity may 

maximize the output of pyramid solar stills (PSS). The 

efficiency of response surface methodology and artificial 

neural networks in determining perfect conditions is 

confirmed by comparative research; ideal parameters 

may yield up to 2.585 kg/m² of distillate.Sharon et al. 

(2020)researched solar stills' structure and operational 

characteristics, emphasizing the importance of 

components like storage tanks, thermometers, and piping 

networks in optimizing performance. Their study 

highlighted design modifications improving solar 

absorption and thermal efficiency in still setups.They 

explored enhancements in solar still efficiency, mainly 

focusing on insulating materials like sawdust to reduce 

heat loss. Their work demonstrated how strategic design 

choices, such as insulation and surface treatments, can 

significantly boost solar stills' thermal performance and 

water productivity. 

The collective literature shows significant 

advancements in enhancing solar still performance 

through various design modifications, machine learning 

models, and integration of novel materials and 

optimization techniques. Notably, studies highlight the 

effectiveness of innovative insulation and structural 

designs in boosting thermal efficiency and freshwater 

output. Despite these developments, a clear research gap 

remains in the comprehensive application of neural 

network-based predictive models, such as RNNs, in 

conjunction with advanced materials like nanoparticles, 

to optimize solar still performance under varied 

environmental conditions. The present experimental 

study aims to bridge this gap by leveraging a neural 

network model to analyze the impact of sun intensity, 

water depth, and nanoparticles (e.g., TiO2 and CuO) on 

single-slope solar stills' thermal behavior and 

Productivity. This approach demonstrates the predictive 

power and optimization capabilities of RNNs over 

traditional methods and provides practical insights into 

achieving sustainable freshwater production with 

enhanced operational efficiency. 

2. MATERIALS AND METHOD

The study outlines the design and components 

of a typical single-basin solar still (SBSS), highlighting 

key structural and functional aspects. The SBSS includes 

a storage tank, solar still, thermometers, and a piping 

network, forming part of a conservative solar still 

(Sharon et al. 2020). The basin, made from 2 mm thick 

galvanized iron and 0.12 m deep, is painted matte black 

to maximize solar absorption, enhancing thermal 

efficiency. This basin is housed in a wooden box with 

external dimensions of 1.2 m x 1.2 m and a thickness of 

0.19 m, while the height measures 0.1 m. The box's 

interior is painted white to optimize sunlight reflection 

onto the water's surface, boosting energy absorption. The 

experimental setup is shown in Fig. 1. Insulating sawdust 

is placed between the basin and the wooden crate to 

minimize heat loss (Mustafa et al., 2020). The setup is 

tested in Coimbatore (latitude 10.9729° N, longitude 

77.3698° E), with a 10° angled placement of a plain 5 

mm thick glass cover on top to capture sunlight 

effectively. For added protection against elements such 

as rain and direct sun radiation, sheet metal encloses all 

five sides of the wooden crate, ensuring the integrity of 

the setup during the experiment. 

Fig. 1: SBSS experimental design setup image 

3. RESULTS AND DISCUSSION

Data from 36 trials that looked at how 

temperature and Productivity were affected by solar 

intensity, water depth, and nanoparticle type are shown 

in Table 1. The water depth ranged from 4 to 8 meters, 

and the solar intensity ranged from 300 to 900 W/m². 

TiO2 and CuO were the most common nanoparticles 

utilized, with concentrations ranging from 1% to 2%. 

When comparing actual and expected productivity 

numbers, the table demonstrates that, on average, the 

actual outcomes roughly match the projections. 

Additionally, it compares actual and anticipated 

temperatures under various experimental situations by 

measuring the temperatures of glass and water. 

Significant findings indicate that while water temperature 

estimates are constant across all tests, higher solar 

intensity and higher nanoparticle concentrations typically 

lead to higher productivity and glass temperatures. The 

information demonstrates how these elements affect the 

system's Productivity and thermal performance. 

The dataset includes several essential input 

characteristics essential to comprehending experimental 

settings. First, "Solar Intensity" provides information 

about the external factors affecting the process by 

measuring the amount of sun energy received throughout 

the experiment. "Water Depth" describes the vertical 

distance between the water's surface and bottom, a 

critical component influencing several aquatic processes. 

"% of Nano Particle," another essential parameter, 
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measures the concentration of nanoparticles used in the 

experiment and offers vital details on the makeup of the 

experimental apparatus. Last but not least, the "Type of 

Nano Particle" feature identifies the particular kind of 

nanoparticles used, such as CuO (copper oxide) or TiO2 

(titanium dioxide), illuminating the unique traits and 

attributes of the nanoparticles being studied. When 

combined, these characteristics provide a thorough 

comprehension of the experimental design and its 

underlying factors. Table 2 below shows the pseudocode 

for the prediction of SBSS performance. 

Table 1. Single slope solar still experimental inputs and Output performance 

Run 
Solar 

intensity 

Water 

depth 

% of 

nanoparticle 

Type of 

nanoparticle 

Productivity Glass temperature water temperature  

Actual predicted Actual predicted Actual predicted 

1 300 4 1 TiO2 0.755 0.6943 51.96 52.03 58.26 58.25 

2 600 6 1.5 TiO2 0.987 0.9468 51.68 51.7 57.98 57.93 

3 900 8 2 TiO2 2.12 2.14 57.94 58.07 61.5 61.53 

4 300 4 1 TiO2 0.65 0.6943 52.04 52.03 58.34 58.25 

5 600 6 1.5 TiO2 0.897 0.9468 51.8 51.7 58.11 57.93 

6 900 8 2 TiO2 2.15 2.14 58.28 58.07 61.58 61.53 

7 300 4 2 TiO2 0.55 0.5225 51.58 51.6 57.88 58.01 

8 600 6 1 TiO2 2.32 2.21 54.76 54.67 61 61 

9 900 8 1.5 TiO2 1.49 1.51 53.15 53.42 59.45 59.43 

10 300 4 1.5 TiO2 1.53 1.52 51.23 50.89 59.89 59.8 

11 600 6 2 TiO2 1.45 1.4 52.16 52.05 58 58 

12 900 8 1 TiO2 1.45 1.4 52.6 52.52 58.9 58.88 

13 300 6 1 TiO2 1.16 1.23 52.08 52.07 59 59.02 

14 600 8 1.5 TiO2 1.12 1.19 52.11 51.7 59.1 59.36 

15 900 4 2 TiO2 2.1 2.13 52.82 52.81 57.12 57.15 

16 300 6 1.5 TiO2 1.45 1.48 50.99 51.5 59.9 59.99 

17 600 8 2 TiO2 0.95 0.9155 53.21 53.39 59.5 59.35 

18 900 4 1 TiO2 2.22 2.26 58.96 59.11 61.26 61.34 

19 300 6 2 CuO 0.3 0.3681 52.55 52.55 57.35 57.45 

20 600 8 1 CuO 0.45 0.5239 50.78 50.96 58.1 57.97 

21 900 4 1.5 CuO 2.75 2.7 56.68 56.7 61.1 61.06 

22 300 6 2 CuO 0.39 0.3485 51.91 51.87 58.21 57.99 

23 600 8 1 CuO 1.06 1.05 51.58 51.72 57.88 57.9 

24 900 4 1.5 CuO 2.34 2.32 54.24 54.15 60.94 60.7 

25 300 8 1 CuO 0.55 0.4553 51.54 51.21 56.55 56.47 

26 600 4 1.5 CuO 1.51 1.45 51.56 51.37 57.86 57.78 

27 900 6 2 CuO 0.784 0.7898 52.86 52.88 57.16 57.29 

28 300 8 1.5 CuO 0.75 0.8711 51.29 51.62 58.46 58.85 

29 600 4 2 CuO 1.02 1.09 47.88 48.21 55.18 55.32 

30 900 6 1 CuO 0.589 0.5651 52.65 52.56 58.85 58.79 

31 300 8 2 CuO 0.4 0.3584 49.72 49.46 57 56.94 

32 600 4 1 CuO 0.598 0.6315 51.87 51.99 57.97 58.22 

33 900 6 1.5 CuO 1.32 1.26 55.32 55.25 60.5 60.63 

34 300 8 1.5 CuO 0.3 0.2356 51.67 51.72 57.9 57.72 

35 600 4 2 CuO 1.1 1.1 52.28 52.21 58.5 58.42 

36 900 6 1 CuO 1.78 1.87 58.11 58.07 61.23 61.26 
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Table 2. Pseudocode of neural networks analysis 

Pseudocode 

1. 
Define the data 

   - data: numpy array with input features and target values 

2. 

Separate features and target variable 

   - X: features (all columns except the last) 

   - y: target variable (last column) 

3. 

Standardize features 

   - scaler = StandardScaler() 

   - X_scaled = scaler.fit_transform(X) 

4. 

Define RNN model 

   - model_rnn: Sequential model with SimpleRNN, Dense 

layers 
   - Compile model_rnn with Adam optimizer and mean 

squared error loss 

5. 

Define LSTM model 
   - model_lstm: Sequential model with LSTM, Dense layers 

   - Compile model_lstm with Adam optimizer and mean 

squared error loss 

6. 

Define CNN model 

   - Reshape X_scaled for CNN input 

   - model_cnn: Sequential model with Conv1D, 
MaxPooling1D, Flatten, Dense layers 

   - Compile model_cnn with Adam optimizer and mean 

squared error loss 

7. 

Train models 

   - Train model_rnn with X_scaled and y for 200 epochs 
   - Train model_lstm with X_scaled and y for 100 epochs 

   - Train model_cnn with reshaped X_scaled and y for 100 

epochs 

8. 

Make predictions 

   - predictions_rnn = model_rnn.predict(X_scaled) 

   - predictions_lstm = model_lstm.predict(X_scaled) 
   - predictions_cnn = model_cnn.predict(reshaped 

X_scaled) 

9. 
Print predictions for each input pair 
   - For each model, iterate over predictions and print 

Productivity for each input pair 

The 3D scatter plot in Fig. 2 visualizes the 

relationship between solar intensity, water depth, and the 

percentage of nanoparticles (TiO2 and CuO) in a solar-

based system (SBSS). Each point represents a 

combination of these parameters, with color 

differentiating between TiO2 (blue) and CuO (red). It 

helps identify trends or variations in performance across 

the parameter space.

Fig. 2: 3D Scatter plot of SBSS output Performance 

3.1 Productivity 

The forecasts of the RSM, ANN, RNN, LSTM, 

and CNN machine learning models and actual 

productivity levels are contrasted in Table 3. Although 

the accuracy of each model's predictions varied, the 

actual productivity numbers ranged from 0.3 to 2.75. 

With only little variations seen, RSM and ANN forecasts 

are consistently the ones that are closest to the exact 

values. However, when LSTM predictions diverge 

significantly from actual outcomes in severe situations, 

models like CNN, RNN, and LSTM exhibit more notable 

variances. Compared to the other models, RSM and ANN 

provide the most accurate forecasts with fewer mistakes. 

The table illustrates how well these models predict 

Productivity in experimental settings when variables like 

sun intensity and nanoparticle concentration are present. 

According to these results, RSM and ANN are the most 

dependable models for this prediction, whereas other 

models show more output variability. 

The MAE and MSE for CNN, LSTM, and RNN 

models are shown in Table 4, along with their respective 

dataset performances. With an MAE peaking at only 0.03 

and a continuously low error rate, the RNN model may 

be underfitting because of its low variability. With MAE 

ranging from 0.01 to 1.33 and MSE from 0.02 to 1.76, 

the LSTM exhibits more fluctuation, demonstrating its 

capacity to identify intricate patterns while having more 

significant peak errors. The CNN often maintains steady 

performance with an MAE between 0.01 and 0.86 and an 

MSE up to 0.74, indicating constant but modest error 

levels. In contrast to RNN's consistent low-error trend, 

LSTM and CNN exhibit variations despite their sporadic 

correctness. CNN balances accuracy and stability, 

whereas LSTM better captures temporal correlations at 

the occasional expense of significant mistakes. 

Fig. 3 compares predicted productivity values 

by RNN, LSTM, and CNN models with experimental 

data across 36 runs. The RNN model (orange line) 

closely follows the actual values (blue line) with minimal 

deviation, indicating high predictive accuracy. The 

LSTM (green line) shows more considerable variations, 

especially in runs with lower Productivity, while the 

CNN (red line) generally aligns better but shows 

moderate divergence. Overall, the RNN provides the 

closest match to experimental values. 

The bar chart, Fig. 4, illustrates MAE and MSE 

for RNN, LSTM, and CNN models in predicting 

Productivity. The RNN model shows the highest 

accuracy with the lowest average MAE (0.01) and MSE 

(0.00), indicating superior predictive performance. The 

LSTM model performs the weakest, with the most 

significant average errors (MAE: 0.25, MSE: 0.06). The 

CNN model ranks between, presenting moderate errors 

(MAE: 0.26, MSE: 0.07). 
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Table 3. Productivity output actual vs ANN predicted 

Productivity 

Actual 

Prediction 

RSM 
ANN 

RNN LSTM CNN 

0.755 0.6943 0.7564 1.0184 0.946 

0.987 0.9468 0.9912 1.2633 0.9985 

2.12 2.14 2.117 1.8749 1.8557 

0.65 0.6943 0.6604 1.0184 0.946 

0.897 0.9468 0.8912 1.2633 0.9985 

2.15 2.14 2.14 1.8749 1.8557 

0.55 0.5225 0.5429 1.1883 0.7193 

2.32 2.21 2.3277 1.3659 1.4571 

1.49 1.51 1.5032 1.9206 1.3623 

1.53 1.52 1.5332 1.1026 0.9615 

1.45 1.4 1.4568 1.2573 0.9364 

1.45 1.4 1.4351 2.0821 1.5923 

1.16 1.23 1.1554 1.1737 1.4164 

1.12 1.19 1.1364 1.4783 1.3868 

2.1 2.13 2.1245 1.7749 1.271 

1.45 1.48 1.4376 1.1969 1.1324 

0.95 0.9155 0.9506 1.4732 1.5185 

2.22 2.26 2.2205 1.9244 2.1846 

0.3 0.3681 0.3105 0.7994 0.3626 

0.45 0.5239 0.4527 1.2243 0.921 

2.75 2.7 2.7461 1.4231 2.3141 

0.39 0.3485 0.4075 0.7994 0.3626 

1.06 1.05 1.0627 1.2243 0.921 

2.34 2.32 2.3361 1.4231 2.3141 

0.55 0.4553 0.5662 1.1082 1.2076 

1.51 1.45 1.5148 0.9436 1.4992 

0.784 0.7898 0.7873 1.2263 0.7584 

0.75 0.8711 0.7599 0.9649 0.6685 

1.02 1.09 1.0371 0.8854 1.0357 

0.589 0.5651 0.5908 1.4405 1.334 

0.4 0.3584 0.4161 0.9109 0.4565 

0.598 0.6315 0.6049 1.0281 1.0936 

1.32 1.26 1.346 1.3104 1.3773 

0.3 0.2356 0.3099 0.9649 0.6685 

1.1 1.1 1.1071 0.8854 1.0357 

1.78 1.87 1.7908 1.4405 1.334 

Fig. 3: Comparison of predicted vs actual values of 
Productivity 

The analysis also examined the influence of 

nanoparticle type and solar intensity on Productivity, 

which ranged from 0.3 kg/m²h with CuO to 2.75 kg/m²·h 

with TiO2. This modeling approach, paired with 

optimization, helps enhance solar still designs for better 

desalination outcomes. 

Table 4. ANN Performance metric of Productivity 

ANN Performance Metric 

RNN LSTM CNN 

MAE MSE MAE MSE MAE MSE 

0 0 0.26 0.07 0.19 0.04 

0 0 0.28 0.08 0.01 0 
0 0 0.25 0.06 0.26 0.07 

0.01 0 0.37 0.14 0.3 0.09 

0.01 0 0.37 0.13 0.1 0.01 
0.01 0 0.28 0.08 0.29 0.09 

0.01 0 0.64 0.41 0.17 0.03 

0.01 0 0.95 0.91 0.86 0.74 
0.01 0 0.43 0.19 0.13 0.02 

0 0 0.43 0.18 0.57 0.32 

0.01 0 0.19 0.04 0.51 0.26 
0.01 0 0.63 0.4 0.14 0.02 

0 0 0.01 0 0.26 0.07 

0.02 0 0.36 0.13 0.27 0.07 
0.02 0 0.33 0.11 0.83 0.69 

0.01 0 0.25 0.06 0.32 0.1 

0 0 0.52 0.27 0.57 0.32 
0 0 0.3 0.09 0.04 0 

0.01 0 0.5 0.25 0.06 0 

0 0 0.77 0.6 0.47 0.22 
0 0 1.33 1.76 0.44 0.19 

0.02 0 0.41 0.17 0.03 0 
0 0 0.16 0.03 0.14 0.02 

0 0 0.92 0.84 0.03 0 

0.02 0 0.56 0.31 0.66 0.43 
0 0 0.57 0.32 0.01 0 

0 0 0.44 0.2 0.03 0 

0.01 0 0.21 0.05 0.08 0.01 
0.02 0 0.13 0.02 0.02 0 

0 0 0.85 0.73 0.75 0.56 

0.02 0 0.51 0.26 0.06 0 
0.01 0 0.43 0.18 0.5 0.25 

0.03 0 0.01 0 0.06 0 

0.01 0 0.66 0.44 0.37 0.14 
0.01 0 0.21 0.05 0.06 0 

0.01 0 0.34 0.12 0.45 0.2 

Fig. 4: MAE and MSE value measure of Productivity 

3.2 Glass Temperature 

Table 5 presents the actual glass temperature 

values alongside predictions made using different 

modeling techniques: Response Surface Methodology 

(RSM), Artificial Neural Network (ANN), Recurrent 
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Neural Network (RNN), Long Short-Term Memory 

(LSTM), and Convolutional Neural Network (CNN). 

The actual temperatures are compared with the predicted 

values for each model to evaluate the prediction 

accuracy. The models show varying levels of accuracy, 

with RSM and ANN predictions generally closest to the 

actual values. However, the LSTM and CNN models 

sometimes produce more divergent results. 

Table 5. Glass temperature output actual vs ANN predicted 

Glass Temperature 

Actual 

Prediction 

RSM 
ANN 

RNN LSTM CNN 

51.96 52.03 52.0055 55.3476 52.4998 

51.68 51.7 51.59 49.1985 39.8902 

57.94 58.07 57.8649 53.428 51.2086 

52.04 52.03 52.0255 55.3476 52.4998 

51.8 51.7 51.59 49.1985 39.8902 

58.28 58.07 58.4649 53.428 51.2086 

51.58 51.6 50.7655 52.1521 59.9527 

54.76 54.67 54.2482 50.8461 45.3572 

53.15 53.42 53.4613 54.8917 40.0087 

51.23 50.89 51.1953 53.6594 47.7526 

52.16 52.05 52.1748 69.0659 73.6241 

52.6 52.52 52.6059 56.5558 47.5338 

52.08 52.07 52.0663 54.9551 53.4753 

52.11 51.7 52.0672 48.8944 37.7137 

52.82 52.81 52.7481 54.0959 56.9486 

50.99 51.5 51.0008 53.2737 46.8262 

53.21 53.39 53.2412 47.4785 51.6478 

58.96 59.11 58.8895 57.2503 50.7224 

52.55 52.55 52.5933 51.7663 48.8491 

50.78 50.96 50.9177 50.5434 64.6324 

56.68 56.7 56.5988 55.6231 47.2119 

51.91 51.87 51.7933 51.7663 48.8491 

51.58 51.72 51.6477 50.5434 64.6324 

54.24 54.15 54.1188 55.6231 47.2119 

51.54 51.21 51.4381 54.6487 70.6781 

51.56 51.37 51.5778 49.5133 42.0834 

52.86 52.88 52.8431 53.7485 44.384 

51.29 51.62 51.3136 52.9391 48.9659 

47.88 48.21 47.8493 48.0355 44.0644 

52.65 52.56 52.6849 56.9635 63.8861 

49.72 49.46 49.6711 51.4167 47.6364 

51.87 51.99 51.8381 51.2047 65.9582 

55.32 55.25 55.3424 55.2596 44.2316 

51.67 51.72 51.7136 52.9391 48.9659 

52.28 52.21 52.2693 48.0355 44.0644 

58.11 58.07 58.1149 56.9635 63.8861 

Table 6 presents the actual glass temperature 

values alongside predictions made using different 

modeling techniques: Response Surface Methodology 

(RSM), Artificial Neural Network (ANN), Recurrent 

Neural Network (RNN), Long Short-Term Memory 

(LSTM), and Convolutional Neural Network (CNN). 

The actual temperatures are compared with the predicted 

values for each model to evaluate the prediction 

accuracy. The models show varying levels of accuracy, 

with RSM and ANN predictions generally closest to the 

actual values. However, the LSTM and CNN models 

sometimes produce more divergent results. 

Table 6. ANN Performance metric of glass temperature 

The Fig.5 presents a comparative analysis of 

actual and predicted glass temperatures across different 

runs. The experimental values are shown in blue, while 

the predicted values from RNN, LSTM and CNN models 

are represented in green, orange, and red respectively. 

The plot demonstrates how closely each model's 

predictions align with the actual values, with CNN 

showing the most variation from the actual data. The 

fluctuations highlight the models' different levels of 

accuracy.Based on average values, the RNN model 

performs better than the other two models, according to 

the performance measures for the three models: CNN, 

LSTM, and RNN. In particular, the RNN produces the 

most accurate forecasts with the least amount of 

departure from the actual values, with the lowest average 

mean squared error of 4.91 and mean absolute error of 

0.09. The MAE and MSE values of the CNN and LSTM 

models are much more significant in contrast; the CNN 

model has an average MAE of 6.34 and MSE of 85.34, 

while the LSTM model has an average MAE of 3.01 and 

MSE of 47.47. As a result, with its greater predicted 

accuracy, the RNN model performs the best on this 

dataset. 

ANN Performance Metric 

RNN LSTM CNN 

MAE MSE MAE MSE MAE MSE 

0.05 0 3.39 11.48 0.54 0.29 

0.09 0.01 2.48 6.16 11.79 139 

0.08 0.01 4.51 20.36 6.73 45.31 

0.01 0 3.31 10.94 0.46 0.21 

0.21 0.04 2.6 6.77 11.91 141.84 

0.18 0.03 4.85 23.54 7.07 50 

0.81 0.66 0.57 0.33 8.37 70.1 

0.51 0.26 3.91 15.32 9.4 88.41 

0.31 0.1 1.74 3.03 13.14 172.69 

0.03 0 2.43 5.9 3.48 12.09 

0.01 0 16.91 285.81 21.46 460.71 

0.01 0 3.96 15.65 5.07 25.67 

0.01 0 2.88 8.27 1.4 1.95 

0.04 0 3.22 10.34 14.4 207.25 

0.07 0.01 1.28 1.63 4.13 17.05 

0.01 0 2.28 5.22 4.16 17.34 

0.03 0 5.73 32.85 1.56 2.44 

0.07 0 1.71 2.92 8.24 67.86 

0.04 0 0.78 0.61 3.7 13.7 

0.14 0.02 0.24 0.06 13.85 191.89 

0.08 0.01 1.06 1.12 9.47 89.64 

0.12 0.01 0.14 0.02 3.06 9.37 

0.07 0 1.04 1.07 13.05 170.37 

0.12 0.01 1.38 1.91 7.03 49.39 

0.1 0.01 3.11 9.66 19.14 366.27 

0.02 0 2.05 4.19 9.48 89.81 

0.02 0 0.89 0.79 8.48 71.84 

0.02 0 1.65 2.72 2.32 5.4 

0.03 0 0.16 0.02 3.82 14.56 

0.03 0 4.31 18.61 11.24 126.25 

0.05 0 1.7 2.88 2.08 4.34 

0.03 0 0.67 0.44 14.09 198.48 

0.02 0 0.06 0 11.09 122.95 

0.04 0 1.27 1.61 2.7 7.31 

0.01 0 4.24 18.02 8.22 67.5 

0 0 1.15 1.31 5.78 33.36 
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Fig. 5: Comparison of predicted vs actual values of glass 
temperature 

The bar graph Fig. 6 shows how well three 

models RNN, LSTM, and CNN perform in forecasting 

glass temperature using the MAE and MSE measures. 

RNN performs the best, as demonstrated by its lowest 

MAE (0.0926) and MSE (0.0311). CNN has the highest 

numbers, with an MAE of 7.8308 and a substantial MSE 

of 87.5733, whereas LSTM has a greater MAE of 2.6017 

and MSE of 14.7656. This implies that RNN is the most 

accurate of the three models for this research study. 

Fig. 6: MAE and MSE value measure of glass temperature 

3.3 Water Temperature 

Table 7 shows forecasts from many ANN-RNN, 

LSTM, and CNN models in addition to real water 

temperature observations. Every row compares the actual 

and anticipated values for a distinct observation. CNN 

projections often differ more than RNN predictions, 

which are more in line with the actual temperatures. This 

implies that, in comparison to the other models, RNN 

anticipates water temperature more accurately. 

Table 7. Water temp. output actual vs ANN predicted 

Actual 

Prediction 

RSM 
ANN 

RNN LSTM CNN 

58.26 58.25 58.27 59.8503 45.5349 

57.98 57.93 57.9375 55.2778 41.7276 

61.5 61.53 61.4865 61.6866 58.4699 

58.34 58.25 58.32 59.8503 45.5349 

58.11 57.93 58.0975 55.2778 41.7276 

61.58 61.53 61.3265 61.6866 58.4699 

57.88 58.01 57.8803 60.0113 63.2916 

61 61 61.045 55.3257 47.5007 

59.45 59.43 60.0781 61.5911 50.5507 

59.89 59.8 59.5425 59.8407 50.8514 

58 58 58.2554 55.4247 56.5376 

58.9 58.88 58.6707 61.6728 62.4714 

59 59.02 58.9331 59.7255 54.5179 

59.1 59.36 59.1622 56.0666 53.3994 

57.12 57.15 57.1347 61.6354 71.3189 

59.9 59.99 59.6178 59.7002 49.0664 

59.5 59.35 59.4037 56.1879 59.3845 

61.26 61.34 60.9056 61.5035 67.6409 

57.35 57.45 57.3641 60.1922 49.0608 

58.1 57.97 58.1252 56.4659 64.9688 

61.1 61.06 61.085 61.8154 67.0407 

58.21 57.99 57.9641 60.1922 49.0608 

57.88 57.9 58.9252 56.4659 64.9688 

60.94 60.7 59.775 61.8154 67.0407 

56.55 56.47 57.7811 61.0532 71.6542 

57.86 57.78 57.1695 55.9135 53.6723 

57.16 57.29 59.2315 61.4283 46.5922 

58.46 58.85 57.5482 61.0188 59.0639 

55.18 55.32 56.9889 56.0912 58.9159 

58.85 58.79 59.7034 61.335 64.2973 

57 56.94 57.3827 61.1648 57.9369 

57.97 58.22 57.4906 55.9299 65.7921 

60.5 60.63 59.3856 61.2917 47.6247 

57.9 57.72 57.5482 61.0188 59.0639 

58.5 58.42 56.9889 56.0912 58.9159 

61.23 61.26 60.7034 61.335 64.2973 

Fig. 7: Comparison of predicted vs actual values of water 
temperature 
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The performance metrics of MAE and MSE for 

CNN, LSTM, and RNN models in forecasting water 

temperature are shown in Table 8. The remarkable 

prediction accuracy of RNN is demonstrated by its 

continuously low mistakes. CNN has much larger MAE 

and MSE than the other models, indicating that it is less 

accurate for this job than LSTM, which has modest 

mistakes. 

The line graph Fig. 7 contrasts the actual water 

temperature measurements with the values predicted by 

the CNN, LSTM, and RNN models. The tight alignment 

of the RNN and LSTM predictions with the actual data 

shows better accuracy. On the other hand, CNN 

predictions show a higher degree of unpredictability and 

notable departure from the actual values. This 

demonstrates that RNN and LSTM outperform CNN 

regarding water temperature prediction. 

Table 8. ANN Performance metric of water temperature 

ANN Performance Metric 

RNN LSTM CNN 

MAE MSE MAE MSE MAE MSE 

0.01 0 1.59 2.53 12.73 161.93 

0.04 0 2.7 7.3 16.25 264.14 

0.01 0 0.19 0.03 3.03 9.18 

0.02 0 1.51 2.28 12.81 163.97 

0.01 0 2.83 8.02 16.38 268.38 

0.25 0.06 0.11 0.01 3.11 9.67 

0 0 2.13 4.54 5.41 29.29 

0.05 0 5.67 32.2 13.5 182.23 

0.63 0.39 2.14 4.58 8.9 79.2 

0.35 0.12 0.05 0 9.04 81.7 

0.26 0.07 2.58 6.63 1.46 2.14 

0.23 0.05 2.77 7.69 3.57 12.75 

0.07 0 0.73 0.53 4.48 20.09 

0.06 0 3.03 9.2 5.7 32.5 

0.01 0 4.52 20.39 14.2 201.61 

0.28 0.08 0.2 0.04 10.83 117.37 

0.1 0.01 3.31 10.97 0.12 0.01 

0.35 0.13 0.24 0.06 6.38 40.72 

0.01 0 2.84 8.08 8.29 68.71 

0.03 0 1.63 2.67 6.87 47.18 

0.02 0 0.72 0.51 5.94 35.29 

0.25 0.06 1.98 3.93 9.15 83.71 

1.05 1.09 1.41 2 7.09 50.25 

1.16 1.36 0.88 0.77 6.1 37.22 

1.23 1.52 4.5 20.28 15.1 228.14 

0.69 0.48 1.95 3.79 4.19 17.54 

2.07 4.29 4.27 18.22 10.57 111.68 

0.91 0.83 2.56 6.55 0.6 0.36 

1.81 3.27 0.91 0.83 3.74 13.96 

0.85 0.73 2.48 6.18 5.45 29.67 

0.38 0.15 4.16 17.35 0.94 0.88 

0.48 0.23 2.04 4.16 7.82 61.19 

0.89 0.78 2.79 7.79 10.88 118.27 

0.91 0.83 2.56 6.55 0.6 0.36 

0.25 0.06 1.98 3.93 9.15 83.71 

0.68 1.56 0.21 0.04 2.17 4.69 

The RNN model outperforms the other models 

in terms of accuracy, as seen by its lowest average MAE 

of 0.16 and MSE of 0.07 in the performance metrics for 

water temperature. The figure 8 demonstrates the 

predictive accuracy of RNN, LSTM, and CNN models 

for water temperature in solar stills, with RNN achieving 

the lowest error values (MAE: 0.4454, MSE: 0.4477), 

followed by LSTM (MAE: 1.846, MSE: 5.598), and 

CNN showing the highest errors (MAE: 7.7117, MSE: 

81.1913), indicating RNN's superior performance. These 

measurements show that the RNN model outperforms the 

LSTM and CNN models, making it the most dependable 

model for forecasting water temperature. 

Fig. 8: MAE and MSE value measure of water temperature 

4. CONCLUSION

• The RNN model consistently outperformed LSTM

and CNN models in predicting solar still productivity,

glass temperature, and water temperature, showing

minimal error metrics (MAE and MSE), and

demonstrating robust predictive capabilities.

• Solar intensity, water depth, and nanoparticle

concentration were identified as critical factors

influencing the thermal behavior and Productivity of

the solar still, with notable differences in output

between TiO2 and CuO nanoparticles.

• TiO2 nanoparticles were more effective than CuO in

enhancing solar still Productivity, with experimental

data showing Productivity varying between 0.3 to

2.75 kg/m²h.

• Actual and predicted values for Productivity, glass

temperature, and water temperature were closely

aligned, especially in RNN, indicating the

effectiveness of the neural network approach for

modeling solar still performance.

• The RNN model showed near-zero MSE in many

trials, indicating its reliability, whereas LSTM

demonstrated greater variability and potential for

significant errors. CNN, while more stable than

LSTM, had a moderate error range.

• Data from 36 trials validated the predictive power of

the models under varying conditions of solar

intensity, water depth, and nanoparticle

concentration, confirming that higher solar intensity

and nanoparticle presence generally improve

productivity and temperature control.
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• These findings suggest that neural networks,

particularly RNNs, are promising tools for optimizing

solar still designs and operating parameters,

contributing to more efficient and sustainable

desalination solutions.
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