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ABSTRACT 

Agriculture, supporting over half of India's population, grapples with the challenge of weed control.  Current 

methods applied in plantation crops lack efficiency and pose environmental and health risks. This paper advocates a paradigm 

shift, emphasizing the critical need for effective weed detection using cluttered unmanned aerial vehicle (UAV) images. The 

research methodology integrates image processing, Mask R-Convolutional Neural Networks (R-CNN), and Internet of 

Things (IoT). A dataset of 200 UAV images was subjected to a thorough preprocessing. In the initial phase, weeds and crops 

were identified with precision employing an UAV-tailored Mask R-CNN with instance segmentation. This was found to 

surpass traditional methods in terms of communication between the model and the agricultural environment. For timely 

decision-making, real-time data were collected using IoT. Average Precision (AP) values reveal high accuracy, notably 89.1% 

for weeds, 88.9% for crops, and an overall precision of 89.4%. The Mask R-CNN network segments and classifies images, 

marking weed zones communicated to farmers via Raspberry Pi with a GSM module, enabling real-time alerts and informed 

decision-making for efficient weed control. This holistic approach, providing object classifications, detailed bounding boxes, 

and masks, addresses weed control challenges, highlighting the transformative potential of advanced technologies in 

agriculture. 
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1. INTRODUCTION

Innovative techniques offer a sustainable 

solution to reduce greenhouse gas emissions while 

safeguarding environmental and human health. 

Traditional methods, which rely on chemical herbicides, 

often result in the overuse of machinery, leading to higher 

carbon emissions from fuel consumption (Leo et al. 

2023; Krishnamoorthi et al. 2023; Kannan et al. 2024; 

Mohanrajhu et al. 2024). Agriculture, an ancient and 

indispensable profession, has evolved over millennia 

with the integration of various technologies, including 

artificial intelligence (AI), to enhance productivity and 

efficiency while mitigating negative environmental 

impacts. Currently, farmers are confronted with a major 

obstacle: a substantial decrease in agricultural 

productivity caused by the presence of weeds.  

Research indicates that the presence of weed 

plants might reduce crop productivity by around 50% 

(Abouziena and Haggag, 2016; LeCun et al. 1998), 

leading to significant negative impacts on the economy. 

The use of herbicides is a cost-effective approach; 

however, it carries the risk of contaminating crop plants, 

posing potential health hazards. On the other hand, AI-

driven robotic solutions, while effective, come with a 

higher price tag. Nevertheless, they eliminate the need for 

human labour and circumvent health risks associated 

with herbicides. In this dynamic landscape, the adoption 

of AI in agriculture has become prevalent. The 

deployment of AI technologies not only addresses the 

challenge of weed infestations but also aligns with the 

broader objective of sustainable and eco-friendly farming 

practices (Gatys et al. 2015). The ongoing integration of 

AI in agriculture signifies a strategic shift towards 

precision farming, where targeted and efficient solutions 

are employed to optimize crop yield without 

compromising environmental safety. The dual 

considerations of economic viability and environmental 

sustainability underscore the importance of striking a 

balance between traditional and cutting-edge approaches 

in agriculture. As the agricultural sector continues to 

embrace AI, there is a promising avenue for the 

development of innovative, cost-effective, and 

environmentally conscious solutions that can 

revolutionize weed control and contribute to the overall 

advancement of agriculture in the modern era (He et al., 

2017). 

https://crossmark.crossref.org/dialog?doi=10.13074/jent.2024.12.243947&domain=pdf&date_stamp=2024-12-30
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2. SURVEYING THE LANDSCAPE OF RELEVANT

In recent years, a plethora of deep learning 

models has been introduced to tackle object recognition 

tasks, showcasing their versatility across various 

domains. However, the agricultural sector poses unique 

challenges, especially in object recognition tasks where 

differentiating between weed and crop plants becomes 

intricate due to shared characteristics such as colour, 

texture, fill, and size (Yu et al. 2019a; Yu, et al. 2019b; 

Ferreira et al. 2017). Although numerous public datasets 

are available for species identification and disease 

prediction at the leaf level (Mallah et al. 2013; Huang et 

al. 2020; Chouhan et al. 2020; Mohanty et al. 2016), the 

shift to real-time applications necessitates datasets at the 

plant level (Olsen et al. 2019). Existing datasets often 

concentrate on diseased crop identification, with limited 

attention to weeds growing amidst the crops. For 

instance, the Deep Weeds dataset, while addressing weed 

species native to northern Australia, primarily serves 

classification tasks and lacks information about plant 

localization. Moreover, the role of lighting conditions in 

agricultural tasks is paramount, and many datasets are 

confined to a single lighting condition (Lameski et al. 

2017). The Carrot-Weed dataset stands out by offering 

images under diverse lighting conditions, albeit restricted 

to carrot plants. However, the challenge persists in 

datasets like Plant Phenotyping and Plant Seedling, 

where the background consists of soil or stones rather 

than other plants (Minervini et al. 2016; Giselsson et al. 

2017; Sudars et al. 2020). Recently advanced object 

detection has enabled collaboration between agriculture 

and deep learning, resulting in precision agriculture 

(Wang et al. 2019; Bakhshipour and Jafari, 2018). 

Convolutional Neural Networks (CNNs) can detect 

weeds in turf grass, ryegrass, and soybeans, making them 

a useful weed management tool. Besides supervised 

models, unsupervised models with minimal tagging can 

detect weeds. These advancements underscore the 

dynamic nature of the field and its potential to 

revolutionize weed detection and management strategies 

in agriculture (Ghazali et al. 2008). They introduced an 

innovative method to improve the accuracy of a 

computerised weed control system by employing 

machine vision. Their research is centred around creating 

a real-time system for removing unwanted plants in oil 

palm fields. The system has been developed to utilise 

image processing techniques in order to accurately detect 

and classify different types of weeds, with a particular 

focus on distinguishing between slender and bulky 

weeds.  Kargar and Shirzadifar (2013) introduced an 

Automated Weed Detection System and Intelligent 

Herbicide Sprayer Robot specifically designed for maize 

fields. This study focuses on implementing an automated 

plantation system that utilises identification technology 

to recognise fruits and vegetables in the plantation. It then 

applies herbicides specifically to areas afflicted by 

weeds.  The approach for Weed Recognition, as 

presented by Siddiqi et al. (2009), utilises the Erosion 

and Dilation Segmentation Algorithm. The system 

employs a CCD camera placed at a 45°-inclination and 

positioned 4 m above the ground, directly in front of the 

tractor and the sequential operations of Erosion and 

Dilation to categorise two distinct weed types - broad and 

narrow. The Quadratic Polynomial and Region of Interest 

(ROI) Techniques were utilised by Ishak et al. (2007) to 

develop a weed detecting technique. The authors 

investigated a curve detection technique that relies on the 

quadratic polynomial method and incorporates the 

utilisation of the ROI method. It is frequently employed 

to extract features for image tasks like classification. 

Burgos et al. (2010) presented a real-time system for 

analysing images to distinguish between crops and weeds 

in maize fields.  

The survey highlights the growing significance 

of deep learning models in addressing complex 

challenges within the agricultural sector, particularly in 

the context of weed detection. Despite the shared 

characteristics between weed and crop plants, recent 

advancements, exemplified by various studies, 

demonstrate the potential of leveraging CNNs and 

innovative image processing techniques. However, 

existing datasets, often focus on diseased crops or lacking 

plant-level localization, underscore the need for more 

comprehensive and diverse data sources. The surveyed 

studies showcase a promising trajectory towards more 

accurate, efficient, and sustainable weed detection and 

management practices, emphasizing the dynamic nature 

of this field and its transformative potential for 

agriculture. 

3. METHODOLOGICAL FRAMEWORK FOR
WEED DETECTION 

The research methodology initiates with a 

meticulous dataset collection, encompassing 200 

unmanned aerial vehicle (UAV) images set against 

cluttered backgrounds, where weeds and crops serve as 

the focal points for segmentation and detection. To 

standardize this dataset, the images, initially sized at 

9000 × 6000 pixels, undergo a preprocessing phase 

involving resizing to 800 × 600 pixels and normalization, 

enhancing overall quality. This foundational dataset 

forms the basis for the incorporation of Internet of Things 

(IoT) concepts into the research framework. In the first 

stage, weeds and crops are identified using a Mask R-

Convolutional Neural Network (R-CNN) with instance 

segmentation. This advanced method is tailored to 

identify and categorise weeds and crops in photos taken 

by an UAV.  

The integration of IoT principles improves the 

approach by facilitating smooth communication between 

the Mask R-CNN model and the agricultural setting. 

Well-placed sensors and actuators facilitate real-time 

data collection, augmenting the system’s responsiveness. 

This innovative approach successfully mitigates the 
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limitations of traditional methods. Diverging from pixel-

wise comparisons inherent in traditional methods, the 

Mask R-CNN identifies and segments objects by creating 

masks that precisely delineate the contours of the target 

classes. The integration of IoT contributes to real-time 

decision-making, ensuring prompt responses to 

identified weed infestations. The holistic methodology 

aims to present a comprehensive perspective on the 

combined impact of instance segmentation, mask 

creation, and IoT integration, providing a more precise 

and efficient solution for detecting and localizing weeds 

and crops in UAV images. This advanced technique 

emerges as a promising alternative, particularly in 

scenarios where traditional methods fall short due to 

processing time and accuracy constraints. The 

culmination of the methodology results in an output that 

not only includes object classifications but also 

encompasses detailed bounding boxes and masks for 

each identified instance. Rigorous validation and testing 

on separate datasets evaluate the model’s generalization 

capabilities. The research utilises criteria such as mean 

Average Precision (mAP), precision, recall, and F1 score 

to provide a thorough performance evaluation of the 

suggested method in comparison to previous 

methodologies. This approach represents a refined and 

accurate solution, overcoming the limitations associated 

with template matching in the detection and localization 

of target objects within cluttered UAV images.  

Proposed method shown in Fig.1 represents an 

advanced and intricate approach to the detection and 

recognition of weeds and crops in UAV images. 

Fig. 1: Advanced weeds and crops detection methodology 

The Mask R-CNN network conducts the 

categorization of every segment in an image, assigning 

them into categories of either crops or weeds. Upon 

identifying a segment as a weed, the associated area in 

the original image is tagged, thus indicating it as a zone 

containing weeds. Afterwards, the image with clearly 

indicated weed areas is sent to farmers via email using a 

Raspberry Pi that has a GSM module. This 

communication technique enables farmers to receive 

visual notifications regarding the existence of weeds in 

their fields, assisting them in making prompt and well-

informed decisions for efficient crop management. 

3.1 Weeds and Crops Detection with Image 
Processing and Mask R-CNN 

3.1.1 Object Detection with Convolutional Neural Networks 

Convolutional Neural Networks have 
significantly transformed computer vision by excelling in 
tasks such as picture classification, segmentation, and 
object detection. These networks draw inspiration from 
the human visual system, utilize convolutional layers to 
extract hierarchical characteristics from input images, 
starting from edges and advancing to more intricate 
shapes. The typical CNN architecture shown in Fig. 2 
includes convolutional, pooling, and fully connected 
layers, with deep layers capturing abstract patterns. In 
object detection, CNNs generate feature maps, 
recognizing edges and textures to identify complex 
structures. Deep Convolutional Neural Networks 
(DCNNs) enhance CNN capabilities with deeper 
architectures, learning intricate representations. These 
neural networks excel in simultaneous localization and 
classification, and their transfer learning ability, utilizing 
pre-trained models, is advantageous for limited datasets. 
Convolutional Neural Networks are a fundamental tool 
in object detection. They automatically learn hierarchical 
representations from data, making them highly effective 
for identifying and classifying objects. By combining 
convolutional operations with deep learning and transfer 
learning techniques, CNNs excel in various computer 
vision applications, enhancing accuracy and efficiency. 

Region-Based Convolutional Neural Networks 
(RCNNs) are a significant leap in object detection, 
tackling the precise identification and localization of 
objects within images. The innovative approach involves 
using selective search to generate Regions of Interest 
(ROIs), allowing independent assessment by 
convolutional networks for each ROI. This method 
revolutionizes object detection by classifying distinct 
image regions into suggested classes. Selective search, a 
pivotal component, iteratively merges adjacent regions 
based on cues like color, texture, and intensity. This 
process creates a diverse set of ROIs, forming a 
comprehensive pool of potential objects of interest within 
the image. Each ROI undergoes independent processing 
by the convolutional network, extracting features for 
precise object recognition. The RCNN architecture, 
initially designed for image detection, has paved the way 
for subsequent advancements, including Mask R-CNN, 
by combining convolutional neural networks with 
region-based strategies. In practical implementation, a 
Python script employs RCNN for inference. Selective 
search determines regions to be classified, and RCNN 
evaluates and classifies these regions, yielding detailed 
results with detected objects, their classes, and bounding 
box coordinates. This integration of selective search and 
RCNN provides a robust framework for accurate object 
localization and classification  
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Fig. 2: Object detection with convolutional neural networks

Fig. 3: Proposed Mask R-CNN 

3.1.2 Advancement to Mask R-CNN in Object Detection 

The architectural paradigm of R-CNN shown in 

Fig. 3 holds significant prominence in the domain of 

computer vision, specifically tailored for object detection 

tasks. Initially devised for proposing regions of interest 

and subsequent independent classification, R-CNN 

encountered drawbacks pertaining to operational speed 

and the absence of end-to-end training capabilities. The 

evolutionary stride culminating in Mask R-CNN sought 

to overcome these limitations, introducing a 

transformative attribute—instance segmentation. In 

contrast to conventional object detection methodologies, 

Mask R-CNN achieves pixel-level precision in outlining 

object boundaries through the generation of segmentation 

masks. Mask R-CNN distinguishes itself by concurrently 

executing three fundamental tasks: object detection, 

classification, and instance segmentation. While 

preserving the region proposal mechanism inherent in 

RCNN, Mask R-CNN extends this by predicting 

segmentation masks for each proposed region. This 

implies that, for every identified object, Mask R-CNN 

not only discerns the object’s class but also furnishes a 

meticulous mask depicting the object’s precise contours. 

The operational sequence involves the generation of 

region proposals utilizing selective search, 

individualized processing through convolutional layers 

for feature extraction, and three parallel pathways for 

object classification, bounding box regression, and 

segmentation mask generation. The pathway dedicated to 

segmentation masks employs supplementary 

convolutional and up sampling layers to generate a binary 

mask for each proposed region, encapsulating the 

instance segmentation of the corresponding object. The 

conclusive output encompasses class labels, bounding 

box coordinates, and intricate segmentation masks 

detailing the object’s contours. The instance 

segmentation functionality embedded in Mask R-CNN 

proves to be particularly advantageous in scenarios 

characterized by object overlap or close alignment, 
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thereby amplifying precision in localization and 

affording a nuanced comprehension of the spatial 

distribution of objects within a given image. 

The Visual Geometry Group Image Annotator 

(VIA) is employed for annotating images in the 

development of computer vision algorithms, particularly 

object detection. User-friendly interface of VIA 

simplifies the process of labelling objects using polygons 

or bounding boxes. Following the process of annotation, 

images are stored in JSON format, providing flexibility 

and adaptability. Subsequently, the dataset is partitioned 

to facilitate efficient algorithm training and evaluation. 

The suggested approach aims to enhance the accuracy 

and precision of object detection in UAV images by 

integrating Mask R-CNN with instance segmentation. 

This approach prioritizes the efficient segregation of 

desired objects by utilizing anchor boxes, a crucial 

component in the process of object detection. In order to 

ensure compatibility with Mask R-CNN, tagged UAV 

images are transformed into the COCO (Common 

Objects in Context) format. This format is widely used to 

assess real-time object identification algorithms, 

facilitating smooth performance comparisons. 

Intersection over Union (IOU) is a crucial statistic used 

in object detection to evaluate the degree of overlap 

between predicted and real bounding boxes. The IOU 

bounding boxes play a crucial role in achieving precise 

detection during Mask R-CNN training. The model 

predicts categorization, bounding boxes, and masks at the 

same time, making the process of detecting objects in 

UAV images more efficient and precise. 

3.1.3 Deep Learning Model MobileNetV3 in Mask R-CNN  

The deep learning model used to integrate Mask 

R-CNN with instance segmentation greatly affects 

performance. The proposed study chose MobileNetV3 

due to its reputation for handling complicated datasets. 

This model is ideal for real-time applications and low-

resource environments because of its lightweight design 

and quick feature extraction. This design balances model 

accuracy and computational efficiency, achieving our 

goal of improving object recognition and precision in 

UAV photos while taking into account UAV 

computational constraints. The incorporation of 

MobileNetV3 is anticipated to contribute to improved 

speed and accuracy, addressing the specific challenges 

posed by instance segmentation in the context of UAV 

image analysis. This model represents a notable 

advancement in the realm of lightweight deep learning 

architectures, specifically tailored for efficient neural 

network inference on mobile and edge devices. Departing 

from its predecessors, MobileNetV1 and MobileNetV2, 

MobileNetV3 introduces innovative features and 

optimizations aimed at achieving a delicate balance 

between model accuracy and computational efficiency. A 

distinctive characteristic of MobileNetV3 is its utilization 

of inverted residual blocks. These blocks start with a 

lightweight linear bottleneck layer, followed by a depth-

wise separable convolution layer, and conclude with a 

linear expansion layer. This inverted structure enables the 

capture of complex patterns while minimizing 

computational costs, making it well-suited for 

deployment in scenarios with resource constraints. 

Within each inverted residual block, MobileNetV3 

incorporates a linear bottleneck layer, which contributes 

to enhanced feature representation by preventing the 

network from discarding valuable information. The hard 

sigmoid activation function and Parametric Rectified 

Linear Unit (PReLU) activation increase the model’s 

non-linearity and expressive capability. The 

MobileNetV3 uses Squeeze-and-Excitation (SE) blocks 

to tune channel-wise feature responses during training to 

improve attention. This lets the network focus on more 

informative channels, improving performance. The 

MobileNetV3 has two sizes: Large and Small. The 

former is powerful and accurate, whereas the latter 

balances efficiency and performance for limited 

computational resources. The last layers use lightweight 

pooling instead of fully connected layers, decreasing 

model parameters and computing complexity. This 

model is a popular backbone network for computer vision 

tasks like image categorization and object recognition, 

especially in real-time applications when computational 

resources are limited. Its unique design and optimizations 

make it a versatile and effective solution for low-

computational devices. 

3.2 Role of Internet of Things in Enhanced UAV 
Weed Detection 

The integration of the IoT within the research 

methodology represents a profound advancement in the 

realm of weeds and crop detection in UAV images. It 

serves as a transformative element by strategically 

placing sensors and actuators throughout the agricultural 

landscape. These IoT devices function as intelligent 

nodes, constantly collecting real-time data on various 

facets, including environmental conditions, crop health 

parameters, and potential weed infestations. The 

significance of this real-time data acquisition cannot be 

overstated, as it forms the foundation for an adaptive and 

responsive system. In practice, IoT facilitates seamless 

communication between the intricate Mask R-CNN 

model and the agricultural ecosystem. This 

interconnectedness ensures that the model is not solely 

reliant on static datasets but dynamically adjusts its 

responses based on the evolving conditions in the field.  

The placement of sensors and actuators at 

strategic points contributes to a comprehensive 

understanding of the agricultural environment, capturing 

nuances that might be missed through static image 

analysis alone. The collected IoT data becomes a crucial 

component in the decision-making process of the Mask 

R-CNN model. By assimilating information on 

environmental changes, crop health fluctuations, and 
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potential weed threats, the model gains a holistic 

perspective. This holistic approach empowers the system 

to make informed decisions in real-time. For instance, 

upon detecting a weed infestation, the system can trigger 

immediate responses, such as alert notifications, 

automated weeding equipment activation, or other 

predefined actions. The synergy between image 

processing and IoT in this methodology marks a 

paradigm shift in precision agriculture. The adaptability 

and responsiveness introduced by IoT not only enhance 

the accuracy of weed and crop detection but also pave the 

way for intelligent, data-driven agricultural practices.  

4. RESULTS AND DISCUSSION

An Intel Xeon E5-2643v3 CPU at 3.40 GHz was 

used in the experiment because of its computing power 

and multicore capabilities needed for complicated deep 

learning applications. Our weed detection system had 64 

GB of RAM to manage large datasets and deep neural 

networks. An NVIDIA Quadro M4000 GPU with 8 GB 

of video memory accelerated deep neural network 

training. Intel Xeon Toolkit 9.0, cuDNN V7.0, Python 

3.5.2, TensorFlow GPU 1.8.0, and Keras were important 

frameworks. To optimize convergence and GPU 

parallelization, input images were organized into ten 

batches and trained with an epoch-wise learning rate of 

0.01. 

To address limitations in traditional method, the 

study proposes the adoption of Mask Region-based CNN 

as an advanced approach to target object detection. The 

MASK R-CNN model undergoes fine-tuning with 

specific parameters, including a learning rate of 0.003, 

156 training epochs, and a batch size of 25. This 

parameter configuration enables the model to effectively 

discern various objects within the images. Quantitative 

assessment includes performance metrics such as 

accuracy for weeds, accuracy for crops, and mean 

average precision, presented in Table 1. 

Table 1. Comparison of performance metrics  

Models 
Accuracy of 

Weed 

Accuracy 

of Crop 
mAP (%) 

Mask 

R-CNN 

88.3 86.7 83.5(m12) 

87.2 88.1 84.2(m19) 

89.6 87.8 87.3(m24) 

89.1 88.7 88.6(m43) 

86.5 88.9 88.1(m69) 

87.8 86.3 86.9(m95) 

These metrics provide insights into the efficacy 

of MASK R-CNN model in precisely detecting and 

segmenting specified target objects. Results, grounded in 

the implementation process, highlight the model’s 

capability to surmount limitations associated with 

traditional template matching, achieving heightened 

accuracy and efficiency in target object detection. 

Average Precision values are subsequently computed for 

weeds, crops, and overall accuracy, revealing notably 

high values of 89.1% for weeds, 88.9% for crops, and an 

impressive overall precision of 89.4% for the specific 

image under consideration. 

The Mask R-CNN network is essential for 

segmenting images and categorizing each segment as 

crop or weed. An area indicated as a weed in the original 

image is delineated as a weed zone. A Raspberry Pi with 

a GSM module sends farmers an email alert with the 

changed image emphasizing weed regions after 

categorization. This intricate communication process not 

only enables farmers to visually discern the presence of 

weeds in their fields but also empowers them with 

additional details for informed decision-making. The 

real-time alerts facilitate timely interventions, aiding 

farmers in implementing effective crop management 

strategies based on the identified weed zones. This 

comprehensive system enhances the overall efficiency of 

weed control and contributes to optimized agricultural 

practices. 

The above work is mentioned to be a proposed 

work. Sampling images has been considered only for the 

implementation of the validity of the proposed work.  

5. CONCLUSION

The research methodology seamlessly 

integrates advanced technologies, including Image 

Processing, Mask R-CNN, and IoT, fostering efficient 

communication between the model and the agricultural 

environment. The process commences with a meticulous 

preprocessing of a substantial dataset comprising 200 

UAV images. In the initial phase, a specialized UAV-

tailored Mask R-CNN, incorporating instance 

segmentation, outperforms conventional methods by 

demonstrating exceptional precision in identifying both 

weeds and crops. The integration of IoT facilitates real-

time data collection, ensuring timely decision-making for 

effective agricultural management. The evaluation of AP 

values reveals a remarkable accuracy level, with specific 

metrics such as 89.1% for weeds, 88.9% for crops, and a 

remarkable overall precision of 89.4%. The Mask R-

CNN network not only segments and classifies images 

but also delineates weed zones. These identified zones 

are then communicated to farmers through a Raspberry 

Pi equipped with a GSM module, enabling real-time 

alerts and informed decision-making. Looking towards 

the future, the research opens avenues for further 

enhancement and exploration. A potential future scope 

involves the integration of machine learning algorithms 

to adaptively optimize the detection model based on 

evolving environmental conditions. Additionally, the 

incorporation of robotic systems for targeted herbicide 

application in weed-identified areas could further 

enhance the precision and efficiency of weed control 
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measures. This forward-looking approach underscores 

the transformative potential of advanced technologies in 

agriculture, paving the way for sustainable and 

technologically-driven farming practices. 
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