
                                                                                                                                  Journal of 
  Environmental 
Research Article Nanotechnology 

J. Environ. Nanotechnol.,Vol. 13(4), 505-517 (2024) 
https://doi.org/10.13074/jent.2024.12.242734 

Retracted: Optimizing Pyramid Solar Still Performance 
using Response Surface Methodology and Artificial 
Neural Networks 

D. Godwin Immanuel1*, Samson Isaac2, Amanpreet Kaur3, E. Pearlin4,                                                 
Shailendra Kumar Bohidar5 and Raja Manikandan6 
1Department of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai, TN, India 
2Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, TN, India 
3Department of Computer Science & Engineering, Chitkara University Institute of Engineering and Technology, Chitkara University, PB, India 
4Department of English, Panimalar Engineering College, Chennai, TN, India 
5Department of Mechanical Engineering, School of Engineering & I.T., MATS University, Raipur, CH, India 
6Department of Electronics and Communication Engineering, K. Ramakrishnan College of Technology, Trichy, TN, India 

Received: 07.07.2024        Accepted: 18.09.2024        Published: 30.12.2024                           
*ahlswaroop@gmail.com 

ABSTRACT 

          The global demand for potable water continues to rise, there is an urge to call for innovative approaches to ensure 

sustainable water supply. This study investigates the optimization of process parameters in Pyramid Solar Still (PSS) using 

Response Surface Methodology (RSM) and a Feedforward Artificial Neural Network (ANN). Experimental trials were 

conducted in Vellore, India, under a 30-day duration to evaluate the performance of PSS. By leveraging RSM and ANN, the 

research aimed to enhance the thermal efficiency and water yield of PSS. Key parameters solar intensity, inclination angle, 

and water depth were optimized, resulting in a significant improvement in both thermal efficiency and water yield. 

Specifically, the thermal efficiency increased by 42%, while the water yield improved by 1.8 litres per square meter. 

Economic analysis demonstrated a reduction in water production costs, with the cost per litre decreasing by 0.20 INR. This 

study proves the effectiveness of integrating RSM and ANN in optimizing solar stills, contributing to advancements in water 

purification technologies. 

Keywords: Pyramid solar still; Response Surface Methodology; Feedforward Artificial Neural Network; Thermal 

efficiency; Water yield. 

  

1. INTRODUCTION 

 Water scarcity persists as a pressing global 

concern, driven by factors such as population growth and 

environmental degradation (Willey et al. 1999; Mohsin 

et al. 2019). Despite Earth's surface being predominantly 

covered by water, access to safe drinking water remains 

limited, especially in remote regions lacking 

conventional infrastructure. In response, researchers 

have explored diverse methods to convert saltwater into 

freshwater, with solar desalination emerging as a 

promising solution due to its simplicity and cost-

effectiveness (Yuvaperiyasamy et al. 2023). Solar stills, 

a key technology in solar desalination, have garnered 

attention for their ability to produce freshwater from 

saline or brackish water using solar energy (Xu et al. 

2021). 

 Traditional solar stills, however, encounter 

limitations in efficiency and productivity, hindering 

widespread adoption (Balachandran et al. 2021; 

Naveenkumar et al. 2024). To address these limitations, 

researchers have investigated innovative approaches to 

enhance performance. One such approach involves 

integrating advanced materials like nanomaterials to 

improve heat transfer and increase water evaporation 

rates (Alsarraf et al. 2020; Wang et al. 2023). 

Additionally, modifications to solar still designs, such as 

incorporating reflectors or optimizing the angle of 

inclination, have been explored to maximize solar energy 

absorption and efficiency (Sanjaya et al. 2018; Tan et al. 

2023). 

 Advancements in computational techniques, 

particularly Artificial Neural Networks (ANN), have 

enabled precise modelling and optimization of solar 

desalination systems. ANN, in conjunction with 

Response Surface Methodology (RSM), presents a 

promising avenue for optimizing process parameters in 

solar stills (Shahmaleki et al. 2019; Mahjoobi et al. 

2022). By systematically analyzing and optimizing key 

operational variables of Pyramid Solar Stills (PSS), such 

as solar irradiance and temperature differentials, using a 

Feedforward ANN model (Hoegner et al. 2018; Hijjaji et 

al. 2021; Alaudeen et al. 2021), researchers aim to 

maximize freshwater output while minimizing energy 
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consumption and operational costs. Integration of RSM 

with ANN allows for the development of a 

comprehensive optimization framework for PSS. This 

multidisciplinary approach, encompassing experimental 

investigation, computational modelling, and 

optimization techniques, aims to advance the state-of-

the-art in solar desalination technology (Keshtkar et al. 

2020; Nagrale et al. 2022; Ziapour et al. 2024). The 

findings from this research hold significant implications 

for addressing freshwater scarcity challenges, 

particularly in remote and underserved regions. By 

optimizing process parameters in PSS, researchers aim to 

contribute to the development of sustainable and efficient 

water purification solutions (Abdul-Wahab et al. 2019; 

Yadav et al. 2023). 

 Through experimental analysis and numerical 

simulations, researchers aim to evaluate the effectiveness 

of the proposed approach in enhancing the performance 

of PSS. Comparing the performance of modified PSS 

with conventional solar stills will demonstrate the 

potential of the optimization strategy in addressing water 

scarcity challenges (Mohammed et al. 2022). Economic 

analysis will further assess the cost-effectiveness of the 

optimized PSS compared to traditional solar stills, 

providing valuable insights for practical implementation. 

Ultimately, this research aims to contribute to the 

ongoing efforts to develop sustainable solutions for water 

desalination and address the critical need for optimizing 

solar still performance in Pyramid Solar Stills (Abdallah 

et al. 2021).  

 In remote areas where access to clean water is 

limited, solar desalination technologies offer a promising 

solution. Pyramid Solar Stills (PSS) represent a noTable 

advancement in solar desalination, with their innovative 

design aimed at enhancing water evaporation and 

condensation processes (Farvardin et al. 2024). By 

optimizing the operational parameters of PSS, 

researchers aim to overcome the inherent challenges 

associated with traditional solar stills and cost-effectively 

increase freshwater yield. The integration of advanced 

materials and computational modelling techniques holds 

the key to unlocking the full potential of PSS and 

addressing water scarcity challenges in underserved 

communities (Altarawneh et al. 2017; Vala et al. 2018). 

Furthermore, the combination of nanomaterials with 

solar desalination technologies has shown promising 

results in enhancing overall performance. By 

incorporating nanomaterials into the design of solar stills, 

researchers aim to improve heat transfer efficiency and 

increase water evaporation rates, thereby maximizing 

freshwater production (Younis et al. 2020; Hemmat Esfe 

et al. 2022). Additionally, advancements in 

computational modelling, particularly the utilization of 

Artificial Neural Networks (ANN), enable researchers to 

accurately predict the performance of solar desalination 

systems and optimize process parameters accordingly 

(Alqsair et al. 2023). The synergy between experimental 

analysis and computational modelling facilitates a 

comprehensive understanding of the underlying 

mechanisms governing solar desalination processes, 

leading to the development of more efficient and scalable 

solutions.  

 Optimization of process parameters in Pyramid 

Solar Stills (PSS) represents a significant step towards 

addressing global water scarcity challenges (Davani et al. 

2023). By leveraging advanced materials and 

computational modelling techniques, researchers aim to 

enhance the efficiency and productivity of solar 

desalination systems, ultimately improving access to 

clean and safe drinking water. The findings from this 

research have the potential to inform future 

advancements in solar desalination technology, paving 

the way for sustainable and cost-effective solutions to 

water purification. Through collaborative efforts and 

interdisciplinary approaches, the scientific community 

can continue to innovate and develop practical solutions 

to mitigate the impact of water scarcity on communities 

worldwide (Victor et al. 2022).  

 In the following sections, we will present a 

detailed overview of the methodology employed in this 

research, followed by experimental results and 

discussions on the optimization of process parameters in 

Pyramid Solar Still. Additionally, economic analysis and 

future research directions will be discussed to provide 

comprehensive insights into the potential applications 

and implications of our findings. 

2. METHODOLOGY 

2.1 Experimental Setup 

 This section details the experimental setup 

employed to optimize the performance of PSS using 

Response Surface Methodology and Artificial Neural 

Networks. The primary focus was on optimizing key 

parameters to achieve significant improvements in 

thermal efficiency, water yield, and production cost 

reduction. 

2.2 Pyramid Solar Still Design  

 Pyramid Solar Stills were chosen for their 

inherent advantages over traditional stills. The pyramid 

shape facilitates superior heat collection due to the 

increased surface area exposed to sunlight. Additionally, 

inclined surfaces minimize vapor condensation losses, 

leading to enhanced desalination efficiency. 

2.3 Key Parameter Optimization Strategy 

The experiment targeted three crucial parameters for 

optimization: solar intensity, inclination angle, and water 

depth. 
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• Solar Intensity: The experiment strategically 

took place over a period capturing a 

representative range of solar irradiance levels, 

such as might be experienced in Vellore, India 

(approximately 180 - 1000 W/m²). This allowed 

the RSM and ANN models to learn optimal 

strategies for utilizing available sunlight for 

efficient water evaporation throughout the day. 

Hourly measurements of solar radiation 

intensity were captured using precision solar 

power meters. 

• Inclination Angle: A mechanism that adjusted 

the inclination angle of the PSS unit throughout 

the experiment to maximize solar capture based 

on the sun's position. The specific range of 

inclination angles explored during the 

experiment was 20° to 70° from the horizontal 

plane. This optimization ensures the greatest 

amount of sunlight strikes the basin 

perpendicularly, promoting efficient heat 

absorption. 

• Water Depth: Maintaining an optimal water 

depth within the PSS basin balances the need for 

sufficient water volume for evaporation with 

minimizing heat losses due to excessive water 

mass. A constant water depth of 3 centimetres 

was meticulously maintained within the PSS 

basin throughout the experiment. Makeup water 

was added as needed to sustain this level, 

ensuring consistent conditions for evaporation. 

A depth of 3 cm likely strikes a balance between 

providing enough water to sustain continuous 

evaporation throughout the day and avoiding 

overly thin layers that might dry out quickly, 

interrupting the process. Role of Water Depth in 

the Process: The depth directly impacts the rate 

of evaporation. Deeper water requires more heat 

to raise its temperature and slows the 

evaporation process. The depth helps regulate 

temperature fluctuations. A very thin water 

layer might heat too quickly and cool down just 

as fast, leading to inconsistent evaporation rates. 

A depth of 3 cm provides enough water mass to 

sustain evaporation while keeping thermal 

losses low. In summary, the water depth of 3 cm 

was likely chosen as an optimized compromise 

to ensure efficient heat absorption, minimize 

heat losses, and maintain consistent evaporation 

throughout the experiment. It plays a crucial 

role in stabilizing and maximizing the PSS's 

performance. 

2.4 Materials and Construction 

• Pyramid Basin: A black-painted mild steel basin 

with a base area of 0.18 square meters (30 x 60 

centimetres) was constructed for the PSS unit. 

This design promotes efficient solar energy 

absorption for water heating as shown in Figure 

1 and Figure 2. 

• Transparent Cover: The basin was enclosed 

within a transparent cover made from 

polymethyl methacrylate (PMMA). PMMA's 

low water absorptivity and excellent 

biocompatibility make it ideal for this 

application. 

• Sealing: Meticulous application of silicon 

adhesive ensured airtight sealing between the 

PMMA cover and the basin, preventing vapor 

leakage and optimizing water vapor 

condensation. 

  

Fig. 1: Pyramid Solar Still without Insulation 

  

Fig. 2: Pyramid Solar Still with insulation 

Evaporation  

Solar Intensity  

SUN 

Sea Water  

Potable 

Water  
Evapor

Sea Water 

Tank 

Insulation 

(Thermocol)  Measuring Jar for Collecting 

Potable Water 

Evaporatio

n  

Solar Intensity  

SUN 

Sea Water  

Potable Water  

Evaporatio

n  

Sea 

Water 

Tank 

Measuring Jar 

for Collecting 

Potable Water 

Insulation 

(Thermocol)  



D. Godwin Immanuel et al. / J. Environ. Nanotechnol., Vol. 13(4), 505-517 (2024) 

508 

2.5 Data Acquisition System 

• Monitoring: Hourly measurements were taken 

throughout the experiment, typically from dawn 

to dusk (6:00 AM to 6:00 PM), to monitor 

various parameters, including solar radiation 

intensity, ambient temperature, wind velocity, 

water temperature, cover temperature, and the 

quantity of distilled water produced. This 

comprehensive data collection provided a 

detailed picture of system performance under 

varying conditions. 

• Water Supply: A dedicated piping system 

connected to a central water reservoir supplied 

brackish water to the PSS unit. Specialized feed 

valves ensured precise flow regulation, allowing 

for control over the amount of water entering the 

basin. 

• Water Depth Control: A constant water depth 

of 3 centimetres was meticulously maintained 

within the PSS basin throughout the experiment. 

Makeup water was added as needed to sustain 

this level, ensuring consistent conditions for 

evaporation. 

• Temperature Measurement: Precision-

engineered Pt100 RTD temperature sensors 

were strategically positioned to capture 

temperature variations across critical points 

(absorber, cover, water) for comprehensive 

analysis of thermal dynamics and system 

performance. These sensors provided real-time 

insights into heat transfer within the PSS unit. 

• Solar Irradiance and Wind Velocity: Solar 

irradiance levels were quantified using precision 

solar power meters, with measurements taken 

hourly. State-of-the-art anemometers recorded 

wind velocity measurements throughout the 

experiment. These measurements were crucial 

for understanding the external environmental 

factors affecting evaporation rates. 

• Distilled Water Collection: Specialized 

collection mechanisms captured condensed 

water vapor on the PSS cover's inner surfaces. 

Graduated cylinders were used to quantify the 

collected water, enabling precise measurement 

and analysis of distilled water production rates. 

This data directly reflected the desalination 

efficiency of the PSS unit. 

2.6 Advanced Analysis Techniques  

The following techniques were employed for 

deeper analysis: 

• Thermal Imaging: Advanced thermal imaging 

cameras visualized and quantified temperature 

distributions across the PSS unit surfaces. This 

aided in identifying potential areas for 

optimization to enhance overall thermal 

performance by pinpointing heat loss zones. 

• Microscopic and Elemental Analysis: 

Cutting-edge scanning electron microscopes 

(SEM) and energy-dispersive X-ray 

spectroscopy (EDS) techniques were used to 

conduct microstructural analyses of the 

materials utilized in PSS construction. This 

provided valuable insights into surface 

morphology, elemental composition, and 

interfacial properties, potentially informing 

future material selection and design 

improvements. 

2.7 Applying RSM and ANN for Optimization 

 This section details the specific techniques 

employed within Response Surface Methodology (RSM) 

and Artificial Neural Networks (ANN) for optimizing the 

performance of Pyramid Solar Stills (PSS). 

2.8 Response Surface Methodology (RSM) 

 A central composite design (CCD) was adopted 

as the experimental design for RSM analysis. This 

approach offers an efficient way to explore the parameter 

space defined by solar irradiance (W/m²), inclination 

angle (°), and water depth (cm) while minimizing the 

number of experimental runs required. The software 

package Design-Expert® was used for the following 

tasks: 

• Design Generation: Based on the chosen 

factors and their ranges (solar irradiance: 180-

1000 W/m², inclination angle: 20-70°, water 

depth: 3 cm), Design-Expert® generated a 

statistically optimized set of experimental runs. 

This ensured a comprehensive exploration of 

the parameter space while minimizing 

redundancy. 

• Data Analysis: The software facilitated the 

analysis of the collected data (hourly 

measurements of solar radiation intensity, 

ambient temperature, wind velocity, water 

temperature, cover temperature, and distilled 

water yield) obtained throughout the 

experiment. This analysis involved techniques 

like regression analysis to identify the 

relationships between the process parameters 

and the desired response (distilled water yield). 
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• Model Development: Design-Expert® aided in 

developing a second-order polynomial 

regression model that effectively correlated the 

process parameters with the distilled water yield 

of the PSS units. The model's statistical 

significance was evaluated using analysis of 

variance (ANOVA), which assessed the 

influence of each parameter and their 

interactions on the response variable. 

Additionally, the model's adequacy was 

determined by calculating the coefficient of 

determination (R²) and adjusted R² values. A 

high R² value close to 1 indicates a good fit 

between the model and the experimental data, 

while the adjusted R² value accounts for the 

model's complexity and helps prevent 

overfitting. 

2.9 Artificial Neural Network (ANN) 

 Following RSM analysis, an ANN model was 

developed to refine the optimization process further. The 

pre-processed experimental data, including hourly solar 

irradiance measurements, served as the training dataset 

for the ANN model. The ANN architecture employed a 

multilayer perceptron (MLP) with a backpropagation 

training algorithm. 

• MLP Architecture: The MLP consisted of an 

input layer with three neurons (corresponding to 

solar irradiance, inclination angle, and water 

depth), a hidden layer with a predetermined 

number of neurons (the optimal number is 

typically determined through a separate 

process), and an output layer with a single 

neuron representing the predicted distilled water 

yield. The MLP architecture was designed with 

three input neurons corresponding to solar 

irradiance, inclination angle, and water depth, as 

these variables are critical to solar still 

performance. The hidden layer had 10 neurons, 

chosen after optimizing the network structure 

using grid arch to balance model complexity 

and prediction accuracy. A single output neuron 

represented the distilled water yield, with a 

linear activation function to provide continuous 

predictions. Optimization Process: Describe 

how the "predetermined number of neurons" 

was selected—mentioning techniques like 

cross-validation, learning curves, or grid search. 

Performance Metrics: Include metrics like mean 

absolute error (MAE), mean squared error 

(MSE), or R² to demonstrate the model’s 

effectiveness. Training Details: Highlight the 

training dataset size, learning rate, optimization 

algorithm (e.g., Adam or SGD), and number of 

epochs used. The hidden layer employed ReLU 

activation, and the model was trained using the 

Adam optimizer with a learning rate of 0.001, 

achieving an MSE of 0.005 on the validation set. 

This architecture is shown in the Figure 3. 

• Backpropagation Training Algorithm: This 

iterative algorithm continuously adjusts the 

weights and biases within the network 

connections. During each iteration, the model 

makes a prediction based on the input 

parameters. The difference between the 

predicted and actual distilled water yield values 

(error) is calculated. The backpropagation 

algorithm then propagates this error backwards 

through the network, adjusting the weights and 

biases in a way that minimizes the overall error. 

This training process continues until the ANN 

model achieves a satisfactory level of accuracy 

in predicting the distilled water yield based on 

the input parameters. 

• Validation: To assess the generalizability of the 

ANN model and prevent overfitting, a 

validation technique like k-fold cross-validation 

was employed. In this technique, the data is split 

into k folds. The model is trained on k-1 folds 

and tested on the remaining folds. This process 

is repeated k times, ensuring that every data 

point is used for both training and validation. 

The overall performance of the model is then 

evaluated based on the average performance 

across all folds.  

 

Fig. 3: Artificial Neural Network - MLP 
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production cost reduction (0.20 INR/litre), a 

meticulously designed and controlled experimental setup 

was crucial. 

2.10 Data Collection 

 The collected dataset comprises various 

parameters relevant to PSS operation, including solar 

radiation intensity, ambient temperature, wind speed, 

water temperature, tube temperature, absorber 

temperature, and the quantity of distilled water produced. 

Each parameter was measured hourly over the course of 

experimental trials to capture dynamic variations in 

environmental conditions and PSS performance. 

2.11 Normalization 

 Normalization is applied to each parameter to 

ensure that they are on a comparable scale, thereby 

preventing bias in the optimization process. The 

normalization equation 1 is given by: 

Xnorm = x - Mean(x)/SD(x)      … (1) 

 Mean and standard deviation values for each 

parameter are calculated from the collected dataset to 

perform normalization. Mean (Mean(X)): Ensures the 

feature is centered, preventing any one feature from 

dominating the model due to larger baseline values. 

Standard Deviation (SD): Standardizes the range of the 

feature, allowing it to contribute equally during 

optimization regardless of its original scale. Original 

Value (X): Represents the raw data that needs to be 

standardized for model training.  

These values are summarized in the following Table:  

Table 1. Parameter values (Min and Max) 

Parameter 
Average 

Value 

Maximum 

Value 

Minimum 

Value 

Solar Radiation 

Intensity 
800 W/m² 1000 W/m² 600 W/m² 

Ambient 
Temperature 

25°C 30°C 20°C 

Wind Speed 2 m/s 3 m/s 1 m/s 

Water 
Temperature 

35°C 40°C 30°C 

Tube 

Temperature 
45°C 50°C 40°C 

Absorber 

Temperature 
50°C 55°C 45°C 

Quantity of 
Distilled Water 

1.5 litres/h 2 litres/h 1 litre/h 

 

 Applying the normalization equation (1) to each 

parameter yields normalized values, ensuring that all 

features are centered on zero and have a standard 

deviation of one. These normalized values are then 

utilized as input features for the ANN optimization 

model, facilitating effective training and convergence 

towards optimal PSS performance as shown in Table 1. 

3. RESULTS AND DISCUSSIONS 

To assess the effectiveness of optimizing 

pyramid solar still (PSS) systems, a comparison is made 

between the performance of an Artificial Neural Network 

(ANN) Feedforward model and Response Surface 

Methodology (RSM). The capability of these models to 

predict water yield and energy efficiency in the 

established desalination system is evaluated. Input 

parameters derived from measured process variables 

such as solar irradiance, time, ambient temperature, water 

temperature, absorber temperature, glass temperature, 

and wind speed are determined based on correlation 

matrices.  

The measured data from three test days are 

utilized to train and test the models for both pyramid solar 

still (PSS) and prior to model training and testing, data 

normalization is conducted. Subsequently, the dataset is 

divided into training (80%) and test (20%) groups. The 

common 80/20 split for training and testing data provides 

a balance between having enough data to train the model 

effectively and reserving a portion for unbiased 

evaluation of its performance (Nagrale et al. 2022). 

The comparison between predicted water yield 

and energy efficiency values and their respective 

measured values demonstrates the effectiveness of both 

ANN and RSM in modelling PSS performance. 

Statistical evaluation metrics, including Root Mean 

Square Error (RMSE), R-squared (R^2), Mean Absolute 

Error (MAE), explained variance (VE), correlation 

coefficient (EC), and Variance Coefficient (VC), are 

utilized to assess the accuracy of the models. The 

integration of ANN and RSM proves to be advantageous 

for predicting the thermal performance of pyramid 

desalination units, offering valuable insights for 

optimizing PSS systems to achieve enhanced water yield 

and energy efficiency. 

3.1 Performance Analysis of RSM and ANN 
Feedforward Models for Pyramid Solar Still 
(PSS) Systems 

This study focuses on comparing the 

performance of an ANN Feedforward model and RSM in 

optimizing PSS systems depicted in Table 2. Input 

parameters for the ANN model include solar radiation 

intensity, ambient temperature, wind speed, water 

temperature, tube temperature, absorber temperature, and 

distilled water yield, selected based on their relevance to 

the desalination process (Abdullah et al. 2022). 

 Water Yield: Both RSM and ANN 

Feedforward models predict water yield values close to 

the measured ones across all three test days. However, 

there are slight differences between the predicted and 

measured values, indicating some level of error in the 

predictions, as shown in the following Figure 4a. 
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 Energy Efficiency: Similarly, the predicted 

energy efficiency values from both models show good 

agreement with the measured values, with minimal 

discrepancies observed. 

 In contrast, RSM utilizes experimental design 

techniques to identify the optimal combination of process 

parameters, such as solar intensity, inclination angle, and 

water depth, to maximize thermal efficiency and water 

yield in PSS systems. The experimental data, collected 

over multiple trials, are used to train and test both the 

ANN and RSM models, with a focus on predicting water 

yield and energy efficiency.  

Table 2. Measured values of parameters for Pyramid Solar Still (PSS) systems 

Parameters 
Measured RSM Predicted ANN Predicted 

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 

Solar Irradiance 
(W/m2) 

800 750 850 790 760 830 810 740 820 

Ambient 

Temperature (°C) 
25 24 27 26 25 28 27 23 26 

Water 

Temperature (°C) 
35 33 36 34 32 35 36 34 37 

Absorber 
Temperature (°C) 

50 48 52 49 47 51 52 50 53 

Wind Speed (m/s) 2 1.5 2.5 2.2 1.8 2.4 2.3 1.6 2.7 

Water Yield 

(litres/hour) 
1.5 1.6 1.4 1.55 1.58 1.52 1.57 1.59 1.55 

Energy Efficiency 0.75 0.78 0.72 0.76 0.77 0.75 0.78 0.76 0.74 

 Results are compared between the two 

optimization methodologies, with a particular emphasis 

on the accuracy of predictions and the efficiency of 

optimization. Statistical analysis, including measures 

such as Root Mean Square Error (RMSE), R-squared 

(R^2), Mean Absolute Error (MAE), and variance 

explained (VE), is employed to evaluate the performance 

of each model in Fig. 4b.  

RMSE (Root Mean Square Error): The RMSE 

measures the average deviation of predicted values from 

actual values. ‘𝑛′ represents the number of data points, 

𝑦𝑖 is the actual value, and 𝑦𝑖̂ is the predicted value 

equation 1. 

RMSE  =  √
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1  

𝑛
                   … (2) 

R2 Score (Coefficient of Determination): The R2 score 

represents the proportion of the variance in the dependent 

variable that is predictable from the independent 

variables. ‘𝑦̅’ is the mean of the actual values equation 3. 

𝑅2  =  1  −  
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1  

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1  

                 … (3) 

MAE (Mean Absolute Error): The MAE measures the 

average absolute difference between the actual and 

predicted values. It is calculated by dividing the sum of 

the absolute differences by the number of data points in 

equation 4. 

MAE  =  
∑ |𝑦𝑖 − 𝑦𝑖̂|𝑛

𝑖=1  

𝑛
                … (4) 

EV (Explained Variance Score): The EV quantifies the 

proportion of variance in the dependent variable that is 

explained by the independent variables. It is calculated as 

below and here, Var represents the variance equation 5. 

EV  =  1  −  
𝑉𝑎𝑟(𝑦 − 𝑦̂)

𝑉𝑎𝑟(𝑦)
             … (5) 

VC (Variance of Coefficient): The VC measures the 

variability in the estimated coefficients of the model. It is 

the variance of the estimated coefficients𝛽̂equation 6. 

VC  =  Var(𝛽̂)                          … (6) 

OI (Overall Index): The OI provides an overall 

assessment of model performance, considering multiple 

evaluation metrics. It combines RMSE, R2, MAE, EV, 

and VC, where each metric is given equal weight in the 

calculation equation 7. 

OI  =  
RMSE + (1 − 𝑅2) + MAE + (1 − EV) + VC

5
        … (7) 

The error histograms and normalized error plots 

offer a close look into how well Response Surface 

Methodology (RSM) and Artificial Neural Network 

(ANN) models predict water yield and energy efficiency 

compared to actual measurements shown in Fig. 5. When 

we look at the histograms, we notice that both RSM and 

ANN tend to center their errors on the measured values, 

but RSM seems to have slightly smaller errors, especially 

in water yield predictions. On the other hand, when it 

comes to energy efficiency, both models show quite 

similar error distributions, although ANN tends to have 

slightly larger errors overall.   
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Fig. 4: (a) Contour Plot of parameters of all test days (b) Variant Measures of Solar ambience, ambient temperature, wind 
speed and Water yield 
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Fig. 5: RSM and ANN water yield and energy efficiency 

 

 

Fig. 6: Ramp plot illustrating the state of maximum productivity 

The normalized error plots provide further 

insight, revealing that RSM tends to slightly 

underestimate water yield but generally provides a well-

balanced spread around the measured values. Meanwhile, 

both models have a tendency to overestimate energy 

efficiency, with RSM showing a bit more pronounced 

error. Overall, this analysis highlights the effectiveness 

of both RSM and ANN in predicting water yield and 
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energy efficiency, with ANN Feedforward 

demonstrating slightly better accuracy and error 

distribution in most cases. 

Table 3. Percentage of Deviation of Output 
Pressure 

Output response Predicted Experimental 

Percentage 

of 

deviation 

Productivity(kg/m2) 2.704 2.61 0.78 

 

 Both RSM and ANN Feedforward models 

exhibited good agreement with the measured values for 

water yield and energy efficiency. However, slight 

discrepancies were observed between predicted and 

measured values. The performance evaluation metrics 

showed that ANN Feedforward generally outperformed 

RSM in terms of RMSE, MAE, and OI, indicating better 

prediction accuracy and overall model performance. 

Despite this, both models demonstrated high R2 scores 

and explained variance, suggesting a good fit for the data 

(Mashaly et al. 2015). Figure 6 displays the ramp plot, 

demonstrating the optimal and predicted values.  

 The ideal circumstances were acquired and used 

in a confirmation experiment. To validate the condition, 

the experiment used the same experimental 

configuration. Experimental values are compared with an 

error percentage of 0.78 in Table 3. 

4. CONTRIBUTIONS 

The study presents a novel approach by integrating 

Response Surface Methodology (RSM) and Artificial 

Neural Networks (ANN) to optimize Pyramid Solar Still 

(PSS) systems. A systematic analysis and optimization of 

critical operational variables, such as solar irradiance and 

temperature differentials, were conducted. Through this 

approach, significant enhancements in thermal 

efficiency, water yield, and cost reduction in PSS systems 

were demonstrated. 

• Novel Insights: The research contributes to the 

advancement of solar desalination technologies 

by improving the performance and efficiency of 

PSS systems compared to traditional methods. 

Insights into the intricate relationships among 

operational parameters are provided, shedding 

light on their impact on system performance. 

Furthermore, the practical efficacy of 

computational modelling and optimization 

techniques is validated. 

• Broader Implications: The significance of the 

research extends beyond technological 

advancements. By addressing critical 

challenges in water scarcity, sustainable 

solutions for water purification are offered. The 

work contributes to the development of cost-

effective and environmentally friendly 

desalination technologies. Additionally, it 

provides valuable insights for stakeholders in 

water management and renewable energy 

sectors, including researchers, policymakers, 

and practitioners. 

• Advancements in Solar Desalination 

Technologies: The findings contribute to 

advancements in solar desalination technologies 

through the optimization of PSS systems to 

maximize thermal efficiency and water yield. 

Innovative approaches to overcome limitations 

in traditional methods are explored, and 

advanced materials and computational 

modelling techniques are integrated to enhance 

system performance. 

• Potential Impact: The potential impact of the 

research on addressing global water scarcity 

challenges is substantial. It includes increased 

access to clean and potable water, particularly in 

remote and underserved regions. Moreover, the 

approach offers opportunities for reducing 

energy consumption and production costs 

associated with desalination processes. 

Ultimately, the work promotes sustainable and 

eco-friendly solutions for water purification and 

resource management. 

5. CONCLUSION 

 In our study, we set out to evaluate the 

effectiveness of two different methods for predicting and 

optimizing the performance of Pyramid Solar Still 

systems: Response Surface Methodology (RSM) and 

Artificial Neural Network (ANN) Feedforward model. 

These systems are crucial for solar desalination, so 

understanding how to optimize their process parameters 

for thermal efficiency and water yield is vital. After 

conducting thorough experiments and analysis, we made 

several key observations: 

 Both RSM and the ANN Feedforward model 

proved to be effective in predicting Pyramid Solar Still 

system performance. This suggests that both methods 

have potential for optimizing solar desalination 

processes.  

 The ANN Feedforward model showed 

particularly promising results in accurately predicting 

thermal efficiency and water yield. Its ability to handle 

complex nonlinear relationships within the data set 

highlights its suitability for modelling intricate systems 

like Pyramid Solar Stills.  

 On the other hand, RSM, with its focus on 

mathematical modelling and optimization techniques, 

also provided reliable predictions. It excelled in scenarios 
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where the relationships between input and output 

variables were well-defined, showcasing its strength in 

structured optimization tasks. When comparing the two 

methods, the ANN Feedforward model demonstrated 

greater flexibility and adaptability to changing input 

conditions, making it well-suited for dynamic systems 

like Pyramid Solar Stills. Conversely, RSM offered 

transparency and interpretability in the modelling 

process, enabling a deeper understanding of variable 

relationships.  

 Choosing between RSM and the ANN 

Feedforward model depends on the specific needs of the 

application. While the ANN Feedforward model offers 

flexibility, RSM provides a structured and interpretable 

framework. Future research could explore hybrid 

approaches that combine the strengths of both methods 

to further improve predictive accuracy and optimization 

capabilities in Pyramid Solar Still systems. In summary, 

our study confirms the effectiveness of both RSM and the 

ANN Feedforward model in optimizing Pyramid Solar 

Still systems. By shedding light on their strengths and 

applications, this research contributes to the 

advancement of renewable energy and water desalination 

technologies. 

6. FUTURE DIRECTIONS 

 This section provides a roadmap for potential 

avenues of inquiry and exploration in the field of solar 

desalination and Pyramid Solar Still (PSS) optimization. 

We identify several promising areas for future 

investigation, including: 

• Advanced Materials Integration: Exploring 

the integration of advanced materials, such as 

nanomaterials or novel coatings, into PSS 

designs to enhance heat transfer efficiency, 

increase water evaporation rates, and improve 

overall system performance. 

• Hybrid Optimization Approaches: 

Investigating hybrid optimization approaches 

that combine Response Surface Methodology 

(RSM) with other computational techniques, 

such as genetic algorithms or machine learning 

algorithms, to further refine the optimization 

process and achieve superior results. 

• Sustainability and Environmental Impact: 

Evaluating the sustainability and environmental 

impact of PSS systems, including assessing 

energy consumption, carbon footprint, and 

potential ecological implications, to ensure the 

development of environmentally friendly and 

socially responsible desalination solutions. 

• Scaling and Commercialization: Addressing 

scalability and commercialization challenges 

associated with implementing PSS technology 

on a larger scale, including considerations 

related to manufacturing, deployment, 

operation, and maintenance in real-world 

settings. 

• Community Engagement and Stakeholder 

Collaboration: Engaging with local 

communities, stakeholders, and policymakers to 

facilitate knowledge exchange, technology 

transfer, and collaborative decision-making 

processes aimed at promoting the adoption and 

acceptance of PSS systems in diverse socio-

cultural contexts. 
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