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ABSTRACT 

Air pollution, comprised of harmful substances suspended in the air, tragically leads to millions of premature 

deaths on an annual basis. Although ground-based stations offer precise monitoring of air pollution, their effectiveness is 

confined to specific geographic areas. Conversely, satellite remote sensing technology holds the promise of broadening 

coverage, yet its primary focus remains on the upper layers of the atmosphere. In pursuit of a comprehensive solution, this 

study endeavors to revolutionize the representation of surface air quality on a global scale by harnessing the power of satellite 

data. Through the utilization of advanced techniques such as Generative Adversarial Networks (GANs) and Convolutional 

Neural Networks (CNNs), it amalgamates data streams from air pollution stations across the globe. Furthermore, 

socioeconomic and environmental data are seamlessly integrated with satellite images to construct sophisticated multiple 

models. The results of this innovative approach unveil the superiority of multiple models over their singular counterparts, 

boasting enhanced accuracy in air quality prediction. The efficient architecture of CNNs combined with the generative 

capabilities of GANs enables real-time or near-real-time monitoring of air pollution levels. This timely feedback is essential 

for implementing prompt interventions and mitigating the impact of air pollution on public health and the environment. 

Keywords: Generative adversarial networks; Air quality; Satellite remote sensing technology; Convolutional neural 

networks; Environment prevention.

1. INTRODUCTION

The quality of our environment, particularly the 

air we breathe, is a critical determinant of public health 

and well-being. With the rapid advancements in 

technology, particularly in the realms of deep learning 

and remote sensing, there exists an unprecedented 

opportunity to revolutionize the monitoring and 

management of environmental air quality. Deep learning, 

a subset of artificial intelligence inspired by the structure 

and function of the human brain, has emerged as a 

powerful tool for extracting meaningful insights from 

complex datasets. By leveraging deep learning 

algorithms (Zhang et al. 2020), we aim to analyze vast 

amounts of environmental data collected from remote 

sensing platforms to predict air quality parameters such 

as pollutant concentrations, aerosol optical depth, and 

particulate matter levels. The integration of deep learning 

with remote sensing data holds immense promise for 

improving the accuracy and timeliness of air quality 

monitoring and forecasting (Shen et al. 2020). By 

harnessing the wealth of information available from 

satellites, drones, and other remote sensing platforms, we 

may learn more about the spatial and temporal dynamics 

of air pollution and how it affects people and the planet. 

Ischemic heart disease, stroke, lung cancer, and chronic 

obstructive pulmonary disease are all made worse by 

particulate matter, which significantly raises the chance 

of unexpected myocardial infarction.  

However, because of their low spatial 

resolution, these monitors are often placed in regions that 

are thought to be potential hotspots for pollution. The fact 

that there are a number of nations without air quality 

monitoring stations only makes the problem worse. 

Another reason to look at other approaches is that the 

maintenance costs might be deterrent to their broad 

deployment. To facilitate large-scale observations and 

reduce spatial distribution uncertainty, remote sensing 

technology has become an attractive choice because of 

the vast areas it covers. Nevertheless, the ability of 

remote sensing to detect air pollution is mostly limited to 

the Earth's upper atmosphere, where measurements are 

highly sensitive. However, these findings may still be 
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used to depict changes in the distribution of air pollution 

on Earth's surface (Filonchyk et al. 2021; Sakti et al. 

2023) For each kind of pollutant (PM, NOx, and SO2) 

measured in 2007 in Hyderabad, India, the API from the 

study by Mozumder et al. (2013) is defined as an average 

comparison value between the present and a standard. 

From July 2018 through July 2021 in Poland, 

Grzybowski et al. (2021) assessed NO2 pollution 

concentrations in the field by merging data from the 

Sentinel-5P satellite and data on driving conditions. They 

used several linear regression and machine learning 

algorithms. Using data from Sentinel-5P, Sentinel-2, and 

local field stations, Rowley et al. (2023) estimated NO2, 

O3, and PM10 air pollution in the UK and Ireland using 

a multimodal-artificial intelligence architecture. The 

difficulty in constructing a globally applicable model for 

air pollution assessment stems from the need to 

incorporate the specific climatic, geographical and 

socioeconomic factors of each site. 

1.1 Contribution of the Research 

• By applying deep learning methodologies to 

environmental data from remote sensing sources, 

this research contributes to the ongoing evolution of 

machine learning techniques for environmental 

monitoring. Specifically, we explore novel 

architectures and algorithms tailored to the unique 

challenges of air quality prediction, thereby 

expanding the range of tools available to 

researchers and practitioners in this domain. 

• Traditional air quality monitoring methods are often 

limited by spatial coverage and temporal resolution. 

By leveraging data from remote sensing platforms, 

this research enables the generation of high-

resolution, real-time air quality maps over large 

geographic areas. This enhanced spatial and 

temporal resolution provides policymakers, urban 

planners, and public health officials with valuable 

insights into localized pollution hotspots and trends, 

facilitating more targeted interventions and 

mitigation strategies. 

• The integration of deep learning with remote 

sensing data enables more accurate and reliable 

predictions of air quality parameters such as 

pollutant concentrations and particulate matter 

levels. By harnessing the power of machine 

learning algorithms to analyze complex 

environmental datasets, this research enhances our 

ability to forecast air quality conditions with greater 

precision, thereby supporting informed decision-

making and risk assessment. 

• The findings of this research have important 

implications for air quality management and policy 

development. By providing timely and accurate 

information on air pollution levels, this research 

empowers the concerned to implement targeted 

interventions and regulatory measures aimed at 

reducing emissions and protecting public health. 

Additionally, by raising awareness of the link 

between environmental factors and air quality, this 

research contributes to the broader discourse on 

sustainability and environmental monitoring. 

• The methodologies and techniques developed in 

this research are designed to be scalable and 

replicable, allowing for widespread adoption and 

application across diverse geographical regions and 

environmental contexts. By establishing a 

framework for integrating deep learning with 

remote sensing data for air quality monitoring, this 

research lays the groundwork for future studies and 

initiatives aimed at addressing environmental 

challenges on a global scale. 

2. PROPOSED METHODOLOGY 

The proposed methodology for this research 

involves several key steps aimed at leveraging deep 

learning techniques in conjunction with data from remote 

sensing-based stations for environmental air quality 

development. Firstly, we will acquire and preprocess 

environmental data from remote sensing platforms, 

including satellite images and ground-based sensor 

networks. This data will encompass a range of 

environmental variables, including atmospheric 

composition, meteorological parameters, and land use 

characteristics, to provide a comprehensive view of air 

quality dynamics. Next, we will design and implement 

deep learning architectures tailored to the task of air 

quality prediction. This will involve exploring various 

neural network architectures, such as CNN and GAN, 

and optimizing hyper parameters to maximize model 

performance. Additionally, transfer learning techniques 

may be employed to leverage pre-trained models and 

accelerate training on limited datasets. Once the deep 

learning models are trained, we will evaluate their 

performance using a combination of quantitative metrics 

and qualitative analysis. This will involve comparing 

model predictions against ground truth air quality 

measurements collected from established monitoring 

stations and assessing the models' ability to generalize to 

unseen data. To validate the robustness and 

generalizability of the proposed methodology, we will 

conduct case studies in diverse geographical regions with 

varying environmental characteristics. This will allow us 

to assess the transferability of the models across different 

spatial and temporal scales and identify potential sources 

of bias or uncertainty. 

Fig.1 shows a flowchart for the suggested 

model's early warning method. The technique begins 

with data cleansing, which involves removing undesired 

and abnormal data. The early warning system operates in 

three modules: pre-processing, forecasting, and 

evaluation. Finally, we will interpret our research 

findings in light of existing literature and address the 

implications for air quality management and policy. This 

will entail identifying critical insights acquired from deep 
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learning models and outlining opportunities for future 

research and development. To summarise, the suggested 

methodology combines cutting-edge techniques from 

deep learning and remote sensing to create a 

revolutionary approach to environmental air quality 

enhancement. We hope to increase our understanding of 

air quality dynamics and promote evidence-based 

decision-making in environmental management and 

public health by using the amount of data accessible from 

remote sensing systems and harnessing the power of 

machine learning algorithms. 

 

Fig. 1: Flowchart of Proposed Model 

2.1 Data Collection 

From 1 March 2019 to 1 March 2021, the 

information containing air pollutant concentrations and 

meteorological conditions in India was received from the 

Central Pollution Control Board (CPCB) in Delhi. Data 

was gathered from 27 monitoring stations for seven 

different air pollutants: SO2, NO, NO2, O3, PM10, 

PM2.5, CO, and six meteorological parameters: wind 

speed (WS), wind direction (WD), solar radiation (SR), 

pressure (BP), atmospheric temperature (AT), and 

relative humidity (RH). 

2.2 Data Pre-processing 

Data for many days was missing due to a 

combination of causes, including instrumental mistakes, 

measurement problems, data transmission difficulties, 

and others. Though there are forty monitoring stations in 

Delhi, only those with complete data were used for 

evaluation because of missing values in contaminants 

and weather. 

2.3 Description of Monitoring Sites 

The National Capital Region (NCR) is home to 

many air quality monitoring stations. The CPCB, DPCC, 

and SAFAR from IITM, Pune are in charge of the 

monitoring. Sections such as Sarojini Nagar, Chandni 

Chowk, Mayapuri Industrial Area, Pitampura, Shahdara, 

Shahzada Bagh, Nizamuddin, Janakpuri, Siri Fort, and 

ITO are monitored by the NAMP of the CPCB. Anand 

Vihar, Civil Lines, DCE, Dilshad Garden, Dwarka, IGI 

Airport, ITO, Mandir Marg, Punjabi Bagh, R.K. Puram, 

and Shadipur are among the eleven regions that CAAQM 

keeps an eye on, while DPCC watches over six different 

spots, including Civil Lines, Punjabi Bagh, Mandir Marg, 

Anand Vihar ISBT, IGI Airport, and R.K. Puram. The 

data from the various monitoring stations is kept by 

DPCC and IMD for Pusa, CPCB for NSIT Dwarka and 

Siri Fort, and DPCC for the rest of the stations. In 

addition to the CPCB and DPCC, SAFAR maintains 

eight monitoring stations all throughout Delhi to track the 

air quality in real-time. One such thing that uses these 

stations' data is the national air quality index. 

2.4 Mathematical Modelling 

One way to model the player population is with 

a matrix, where each row characterizes a player besides 

each column characterizes their various qualities. There 

are exactly as many columns in this matrix as there are 

problem variables and the values that have been proposed 

for them. Using (1), we can specify the players' matrix. 

𝑋 =

[
 
 
 
 
𝑋1 𝑥1

1 ⋯ 𝑥1
𝑑 ⋯ 𝑥1

𝑚

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑋𝑖 𝑥𝑖

1 ⋯ 𝑥𝑖
𝑑 ⋯ 𝑥𝑖

𝑚

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑋𝑁 𝑥𝑁

1 ⋯ 𝑥𝑁
𝑑 ⋯ 𝑥𝑁

𝑚]
 
 
 
 

              (1) 

Here X is matrix, xi
d is the dth breadth of ith player, m is 

the sum of variables, besides N is the sum of players. By 

including Xi in function, valuable insights are derived, as 

shown in (2) to (7). 

𝐹𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛                                                   (2) 

𝑋𝑏𝑒𝑠𝑡 = 𝑋(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑚𝑖𝑛(𝑓𝑖𝑡), 1:𝑚)        (3) 

𝐹𝑤𝑜𝑟𝑠𝑡 = 𝑚𝑎𝑥                                                (4) 

𝑋(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑚𝑎𝑥(𝑓𝑖𝑡), 1:𝑚)                      (5) 

𝐹𝑛 =
𝑓𝑖𝑡−𝐹𝑤𝑜𝑟𝑠𝑡

∑ (𝑓𝑖𝑡𝑗−𝐹𝑤𝑜𝑟𝑠𝑡)
𝑁
𝑗=1

                                      (6) 

𝑃𝑖 =
𝐹𝑖

𝑛

𝑚𝑎𝑥(𝐹𝑛)
                                                     (7) 

Here, Fbest characterizes the best fitness function 

value, Xbest is the finest variables' values, Fworst is the 

worst fitness purpose value, Xworst is the worst variables' 

standards, Fn is the regularize functions, and Pi is the 

likelihood purpose of ith player.  
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3. RESULTS AND DISCUSSION 

The training process utilized a 12-gigabyte 

NVIDIA Tesla K80 GPU equipped with GDDR5 

VRAM, providing 11.439 gigabytes of usable memory. 

Tensor Flow 2.0, integrated with the Keras API, served 

as the primary framework for training, evaluating, and 

predicting across all models in this study. Here are the 

expansions for the given acronyms: 

• DPCC: Delhi Pollution Control Committee 

• SAFAR: System of Air Quality and Weather 

Forecasting and Research 

• NAMP: National Air Quality Monitoring 

Programme 

• DCE: Delhi College of Engineering (now known as 

Delhi Technological University) 

• ITO: Income Tax Office (often refers to the ITO 

area in Delhi, where several government offices are 

located) 

• CAAQM: Continuous Ambient Air Quality 

Monitoring 

• ISBI: Institute of Systems Biology India 

• IMD: India Meteorological Department 

• NSIT: NetajiSubhas Institute of Technology (now 

known as NetajiSubhas University of Technology) 

3.1 Evaluation Module 

After the forecasting module, the results were 

evaluated using two criteria: Standard evaluation 

parameters and AQI assessment. RMSE, MSE, MAPE, 

MDA, and MDAPE were used to evaluate the 

performance of the proposed model. 

3.1.1 RMSE  

A commonly used statistic for gauging the 

discrepancy between a model's projected values and the 

actual values is the Root-Mean-Square Error. The root-

mean-squared error (RMSE) may be determined by 

calculating the following: the mean of the residuals, the 

square root of the mean, the norm of the residuals for 

each data point, and the residuals themselves, which 

represent the difference between the forecast and reality. 

3.1.2. MAE 

The mean absolute error (MAE) is a measure of 

the size of errors for a collection of predictions and 

observations based on the mean of the absolute errors for 

the group. It is also known as the L1 loss function. 

3.1.3. MAPE 

It is often referred to as Mean Absolute 

Percentage Error (MAPE). In statistics, it is a measure of 

the prediction accuracy of a forecasting approach. First, 

the absolute difference between the Actual Value (At) 

and the Predicted value (Pt) are determined. The mean 

function is then applied to the result to obtain the MAPE 

value. The lower the MAPE, the better the model's fit. 

3.1.4. MDA 

Mean directional accuracy, also referred to as 

mean direction accuracy, is a statistical measure of the 

prediction accuracy of a forecasting approach. The 

predicted direction (upward or downward) and the actual 

obtained direction are compared. 

3.2 Standard Evaluation Parameter Criteria 

Root-Mean-Square Error (RMSE) is a 

commonly used statistic to quantify the discrepancy 

between the values that a model predicts and the actual 

values. The recommended hybrid model has reduced the 

RMSE value for all air pollutants, with CO having a 

value of 0.0527, NO of 0.0775, NO2 of 0.0441, SO2 of 

0.0298, O3 of 0.0622, PM2.5 of 0.0594, and PM10 of 

0.0743. To calculate RMSE, one must know the residual 

(the difference between prediction and reality) for each 

data point, as well as the norm of residual, mean of 

residuals, and square root of the mean.  

Tables 1 to 4 represent that the validation of 

different measure performance with different classifier 

models and proposed model as RMSE, MAE, MAPE and 

MDA. In the analysis of different gas as CO, NO, NO2, 

SO2, O3 and PM10. In MDA calculation of O3 pollutant, 

the LSTM model attained as 91.27 and LSTM model 

attained as 93.12 and the proposed model as 93.12 

correspondingly. Then the PM10pollutant, the LSTM 

model attained as 95.66 and GRU model attained as 

95.66 and the proposed model as 97.66 correspondingly. 

Table 1. Validation Criteria: RMSE 

Validation Criteria Pollutant LSTM GRU Proposed 

RMSE 

CO 87.3 87.3 87.47 

NO 88.22 88.29 88.22 

NO2 89.86 89.24 89.86 

SO2 91.25 91.27 91.28 

O3 93.12 93.12 93.12 

PM10 95.66 95.66 97.66 

Table 2. Validation Criteria: MAE 

Validation Criteria Pollutant LSTM GRU Proposed 

MAE 

CO 87.3 87.3 87.30 

NO 88.58 88.29 88.22 

NO2 89.86 89.86 89.81 

SO2 91.25 91.27 91.28 

O3 93.12 93.12 93.12 

PM10 95.66 95.66 97.66 
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Table 3. Validation Criteria: MAPE 

Validation Criteria Pollutant LSTM GRU Proposed 

MAPE 

CO 87.3 87.3 87.3 

NO 88.15 88.29 88.25 

NO2 89.86 88.29 89.22 

SO2 91.31 89.86 88.29 

O3 93.12 91.27 89.86 

PM10 95.66 95.66 97.66 

Table 4. Validation Criteria: MDA 

Validation Criteria Pollutant LSTM GRU Proposed 

MDA 

CO 87.3 87.3 87.3 

NO 88.22 88.29 88.29 

NO2 88.29 89.86 89.86 

SO2 89.86 91.27 91.27 

O3 91.27 93.12 93.12 

PM10 95.66 95.66 97.66 

4. CONCLUSION 

The integration of deep learning with remote 
sensing data for environmental air quality monitoring 
represents a significant leap forward in our ability to 
understand, predict, and manage air pollution. Through 
the development and application of advanced machine 
learning algorithms, this research has demonstrated the 
potential to enhance monitoring precision, provide timely 
alerts, and inform evidence-based policymaking in the 
realm of environmental health. By leveraging the vast 
amount of data available from remote sensing platforms, 
we have been able to gain deeper insights into the 
complex dynamics of air quality, uncovering patterns and 
trends that were previously obscured by limitations in 
spatial and temporal resolution. These insights have not 
only advanced our scientific understanding of air 
pollution but also empowered policymakers, urban 
planners, and public health officials to implement 
targeted interventions aimed at reducing emissions and 
protecting public health. As we look to the future, 
continued research and innovation in the fields of deep 
learning and remote sensing will be essential for 
addressing emerging environmental challenges and 
safeguarding the health and well-being of current and 
future generations. By building upon the foundations laid 
by this research, we can work towards a more sustainable 
future, where clean air is a fundamental right enjoyed by 
all. In conclusion, the findings of this research underscore 
the transformative potential of harnessing cutting-edge 
technologies for environmental monitoring and 
management. Through collaboration across disciplines 
and sectors, we can harness the power of data-driven 
insights to tackle the pressing environmental issues of our 
time. 
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