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ABSTRACT 

Industrial activities pose significant challenges to environmental conservation due to the generation of large 

volumes of waste. Effectively managing industrial waste is essential for mitigating environmental impact and fostering 

sustainable development. This research proposes the utilization of Extreme Learning Machine (ELM) algorithms to optimize 

industrial waste management practices and enhance environmental conservation efforts. The study encompasses various 

aspects, including predictive modelling for waste generation, automated waste segregation and sorting, optimization of waste 

treatment processes, environmental impact assessment, resource recovery from waste streams, real-time monitoring and 

control systems, decision support systems for policy-making, data-driven compliance monitoring, risk assessment, and 

mitigation strategies. Overall, the advantages of ELM make it a powerful tool for various machine learning tasks, particularly 

in scenarios where efficiency, scalability, and simplicity are crucial. By integrating ELM algorithms with Internet of Things 

(IoT) devices and sensor networks, smart waste management systems can be developed for proactive intervention and 

pollution prevention. This research aims to contribute to the advancement of sustainable industrial practices and 

environmental conservation efforts through innovative applications of Extreme Learning Machine in waste management. 

Keywords: Machine learning; Industrial waste management; Environmental conservation; Predictive modelling. 

1. INTRODUCTION

Industrial operations are critical to economic 

progress (Han et al. 2018), but they frequently cause 

environmental deterioration due to the accumulation of 

massive amounts of trash. Addressing the issues 

associated with industrial waste management is critical 

for reducing environmental impact and promoting 

sustainable development. Traditional waste management 

systems are frequently inefficient and fail to handle the 

complexities of varied waste streams and environmental 

concerns (Zhang et al. 2023). In recent years, there has 

been an increased interest in using machine learning 

techniques to transform industrial waste management 

processes. Machine learning can improve waste 

management processes (Mekaoussiet al. 2023), increase 

resource recovery, and reduce environmental impact 

through data-driven decision-making and automation. 

Machine learning, using advanced algorithms and big 

data analytics, can provide insights into trash generation 

trends, automate waste stream sorting and segregation, 

optimize waste treatment operations, and provide real-

time monitoring and management of industrial facilities 

(Genget al. 2018). 

This study aims to investigate the varied uses of 

machine learning in industrial waste management for 

environmental conservation. This project seeks to 

contribute to the development of innovative and 

sustainable industrial waste management solutions by 

tackling key challenges such as predictive modeling for 

waste generation (Pardini et al. 2018), waste treatment 

process optimization, and real-time monitoring of 

environmental indicators. This study aims to advance our 

understanding of machine learning's potential to 

transform industrial waste management practices and 

promote environmental sustainability by conducting a 

comprehensive review of existing literature, analyzing 

case studies, and developing novel methodologies (Lim 

et al. 2022). At Wastewater Treatment Plants (WWTPs), 

aeration is a complicated system that involves several 

chemical transformations and a plethora of sluggish and 

unpredictable biological processes (AlOmar et al. 2023). 

Consequently, there is a critical need for precise aeration 
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quantity prediction and real-time, quick regulation in 

engineering, science, and practicality (Wang et al. 2018). 

Most WWTP predictions and controls are based on 

traditional mechanistic models, such as activated sludge 

models, which can give rather robust data thatfulfills the 

requirements. Due to computational power restrictions, 

the efficient implementation of traditional mechanistic 

models in WWTPs has been hard. These models rely 

significantly on complex and incomprehensible model 

parameters (Yang et al. 2023). However, when 

calibrating the results, classic mechanistic models could 

be difficult to work with because they necessitate a wider 

range of starting data types. Worse yet, conventional 

mechanical models are notoriously slow and practically 

uncontrollable (Pardini et al. 2019). 

2. LITERATURE REVIEW 

This chapter provides a critical literature 

analysis on municipal solid waste (MSW) management 

to help readers have a better grasp of MSW management 

strategies used on global and national scales. The 

literature available covers a wide range of topics, 

including current trends in MSW generation, various 

health and environmental impacts associated with landfill 

practices, physicochemical properties of MSW, 

Hazardous solid waste (HSW), alternative waste disposal 

methods, laws and policies in India pertaining to MSW 

management, and the history and role of civic 

organizations engaged in SWM and the details on the 

history, the present state, and the prospects of solid waste 

management in India. 

The average daily generation of municipal solid 

waste (MSW) in the world is 1.2 kg per person or about 

1.3 billion metric tonnes. Approximately 0.68 billion 

tonnes of trash was generated each year, or 0.64 kg per 

person, per day, up until around 10 years ago. There will 

be 4.3 billion people living in urban areas by 2025, and 

their solid waste will amount to 2.2 billion tonnes per 

year, or 1.42 kg per person, per day (kpd) (The World 

Bank, 2012). The volume of total solid waste is predicted 

to rise from 13 billion tonnes in 1990 to 27 billion tonnes 

in 2050, according to projections from the United 

Nations Population Division and the World Bank's gross 

domestic product (GDP) prediction  Kawai and Tasaki 

(2016) found that per capita MSW was more variable in 

countries with GDPs below US$20,000 compared to 

nations with higher GDP.Developing nations' per capita 

MSW, urban population growth, national GDP, and per 

capita MSW are all positively correlated with one another 

(Karak et al. 2012; Denafas et al. 2014). According to 

Korner (2003) and Kawai and Tasaki (2016), emerging 

nations such as India, Sri Lanka, Pakistan, Bangladesh, 

and Thailand generate between 0.5 and 1.4 kpd, 0.3-0.65, 

0.4-0.85, 0.65, and 0.41, respectively. The majority of the 

municipal solid waste (MSW) is generated by tourist-

driven high-income nations in Asia and Africa 

(Alexandrov et al.  2021), including Mauritius, Maldives, 

and Thailand. Their 1,44kpd, 2.48 kpd, and 1.30 kpd 

generation rates are similar to what is seen in developed 

nations. Affluent nations have a maximum MSW 

generation limit that is 400 g higher than the Maldives 

(Troschinetz and Mihelcic, 2009). From 31.3 million 

metric tonnes in 1980 to 113.0 million metric tonnes in 

1998, China's MSW output grew substantially, with an 

average daily generation rate of 1.20 kg per inhabitant. 

Between 1985 and 1995, the annual rate of rise is 8-10%, 

and then it drops to 3-5% after that. According to Wang 

and Nie, (2001), China's urban population grew from 

94.5 million in 1980 to 207.4 million in 1996, and the 

country's GDP and urban population both contributed to 

a rise in the amount of municipal solid trash created. In 

Nepal, the Kathmandu Valley is the only source of almost 

40% of the country's total MSW. Pokhrel and 

Viraraghavan, (2005) calculated that 0.565 kpd of MSW 

is generated in the Kathmandu Valley each year, with a 

national average ranging from 0.2 to 0.5 kpd. One may 

observe a continuous linear pattern of per capita MSW 

rise that is related to national wealth when comparing the 

rates of solid waste output among ASEAN members. 

Cambodia has the lowest trash creation per capita among 

ASEAN nations, with an average of 0.34 kpd, as reported 

by Parizeau et al.  (2006). 

The low-income ASEAN countries, viz, 

Myanmar, Vietnam, and Laos, produced an average of 

0.56 kpd of solid waste (0.45, 0.55, and 0.69 kpd, 

respectively), whereas the middle-income ASEAN 

countries—Indonesia, Malaysia, the Philippines, and 

Thailand—produced 0.76, 0.81, 0.52, and 1.10 kpd, 

respectively, with an average of 0.80 kpd. In 1995, the 

high-income country of Singapore produced an even 

greater 1.10 kpd of MSW. It was estimated that the main 

cities of Malaysia produced 1.62–1.7 kg/capita/day in 

2003, which is nearly double the national average of 0.8–

0.9 kg/capita/day. By 2024, this figure is projected to 

increase linearly to 2.23 kg/capita/day (Manaf et al. 

2009; 2009). As Taiwan exemplifies, economic 

development has not always led to a linear increase in 

MSW generation, because a stronger economy is better 

able to implement environmentally friendly policies. 

Even though the economy continued to expand, the 

national per capita MSW generation rate decreased 

significantly from 1.14 kg/capita/day in 1997 to 0.81 

kg/capita/day in 2002 as a result of aggressive MSWM 

practices mandated by the government of Taiwan in 1997 

(Kawai and Tasaki, 2016). 

3. METHODOLOGY 

The proposed method of using Extreme 

Learning Machine (ELM) algorithms to optimize 

industrial waste management begins with the 

comprehensive acquisition of data about industrial waste 

generation, treatment processes, and relevant 

environmental parameters. This data is obtained from 
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diverse sources including industrial databases, 

environmental monitoring stations, and sensor networks. 

Subsequently, the collected data undergoes meticulous 

preprocessing steps aimed at enhancing its quality and 

suitability for analysis. These preprocessing steps 

encompass data cleaning to rectify errors and 

inconsistencies, normalization to ensure uniform scale 

across features, and feature extraction to identify 

informative attributes relevant to the predictive modeling 

and optimization tasks. By employing robust data 

preprocessing techniques, the method ensures that the 

subsequent modeling efforts are based on reliable and 

well-structured data, laying the foundation for effective 

industrial waste management and environmental 

conservation strategies. Decision Support Systems for 

Policy-making: ELM-driven decision support systems 

are developed to assist policymakers in formulating 

effective regulations and policies for industrial waste 

management and environmental conservation. These 

systems analyze large-scale data to identify trends, assess 

risks, and recommend strategies for mitigating 

environmental impact. The proposed methods are 

evaluated and validated through rigorous testing and 

validation procedures. Performance metrics such as 

accuracy, efficiency, and environmental impact are 

assessed to ensure the effectiveness of the developed 

models and systems. 

 

Fig. 1: Layers in ELM of the proposed model 

3.1 Extreme Learning Machine (ELM)  

The Extreme Learning Machine (ELM) is a 

novel learning technique for single hidden layer 

feedforward neural networks. The algorithm randomly 

initialises hidden neuron weights and uses Moore-

Penrose (MP) generalised inverse to calculate output 

weights (Lim et al.  2019). ELM, unlike slow gradient 

descent-based learning algorithms for SLFN, does not 

require iterative parameter tuning. Instead, it randomly 

initialises the hidden layer parameters and fixes them 

during the learning process. The output weights are 

then determined analytically. The ELM hidden layer 

turns input data into a high-dimensional feature space. 

Transforming input data makes it more separable in 

the ELM feature space, simplifying task solutions. The 

ELM algorithm learns quickly and has strong 

generalisation performance. 

Extreme Learning Machine (ELM) Model 

Development: ELM algorithms are employed to 

develop predictive models for various aspects of 

industrial waste management. These models utilize the 

collected data to forecast waste generation patterns, 

optimize waste treatment processes, and assess 

environmental impact. ELM is chosen for its ability to 

efficiently handle large datasets and its rapid learning 

capabilities. 

    Machine learning algorithms, including 

ELM, are utilized to automate the segregation and 

sorting of different types of industrial waste 

(Automated Waste Segregation and Sorting). Image 

recognition, sensor data analysis, and other techniques 

may be employed to identify and categorize waste 

streams, enabling efficient recycling and proper 

disposal. 
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Here's a pseudocode representation of the ELM algorithm: 

➢ 𝐼𝑛𝑝𝑢𝑡: 
− 𝑋: 𝐼𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑛 𝑥 𝑚 𝑚𝑎𝑡𝑟𝑖𝑥) 
− 𝑌: 𝑇𝑎𝑟𝑔𝑒𝑡 𝑙𝑎𝑏𝑒𝑙𝑠 (𝑛 𝑥 1 𝑣𝑒𝑐𝑡𝑜𝑟) 
− 𝐻: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 
− 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 
− 𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟   

(𝑒. 𝑔. , 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑜𝑟 𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓𝑜𝑟 𝑚𝑢𝑙𝑡𝑖
− 𝑐𝑙𝑎𝑠𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) 

 
➢ 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐿𝑀(𝑋, 𝑌, 𝐻, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛): 
➢ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑊_𝑖𝑛 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑚 𝑥 𝐻) 
➢ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝐻_𝑜𝑢𝑡 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋 ∗  𝑊_𝑖𝑛) 
➢ 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑀𝑜𝑜𝑟𝑒 − 𝑃𝑒𝑛𝑟𝑜𝑠𝑒 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝐻_𝑜𝑢𝑡: 𝐻_𝑝𝑠𝑒𝑢𝑑𝑜_𝑖𝑛𝑣𝑒𝑟𝑠𝑒 =

 𝑝𝑖𝑛𝑣(𝐻_𝑜𝑢𝑡) 
➢ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑊_𝑜𝑢𝑡 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝐻 𝑥 1) 𝑜𝑟 (𝐻 𝑥 𝑘) 𝑓𝑜𝑟 𝑚𝑢𝑙𝑡𝑖 −

𝑐𝑙𝑎𝑠𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 
➢ 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠: 𝑊_𝑜𝑢𝑡 =  𝐻_𝑝𝑠𝑒𝑢𝑑𝑜_𝑖𝑛𝑣𝑒𝑟𝑠𝑒 ∗  𝑌 
➢ 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊_𝑖𝑛 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊_𝑜𝑢𝑡 

 
➢ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡, 𝑊_𝑖𝑛, 𝑊_𝑜𝑢𝑡): 
➢ 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝐻_𝑜𝑢𝑡_𝑡𝑒𝑠𝑡 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋_𝑡𝑒𝑠𝑡 ∗

 𝑊_𝑖𝑛) 
➢ 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡: 𝑌_𝑝𝑟𝑒𝑑 =  𝑜𝑢𝑡𝑝𝑢𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐻_𝑜𝑢𝑡_𝑡𝑒𝑠𝑡 ∗  𝑊_𝑜𝑢𝑡) 
➢ 𝑅𝑒𝑡𝑢𝑟𝑛 𝑌_𝑝𝑟𝑒𝑑 

 

Optimization of Waste Treatment Processes: 

ELM-based optimization algorithms areapplied to 

enhance the efficiency and effectiveness of waste 

treatment processessuch as composting, anaerobic 

digestion, and incineration. These algorithms adjust 

process parameters in real-time to maximize resource 

recovery and minimize environmental impact. 

ELM is integrated with IoT devices and sensor 

networks to develop real-time monitoring and control 

systems for industrial waste management. These systems 

continuously collect data on waste generation, treatment 

processes, and environmental conditions, enabling 

proactive intervention and pollution prevention. 

A brief overview of how ELM works is as 

follows: 

Input Layer: ELM consists of an input layer, where each 

input feature is connected to all the nodes in the next 

hidden layer. 

Hidden Layer: ELM typically has only one hidden layer, 

which contains a large number of hidden nodes. The 

weights connecting the layers are randomly initialized. 

Activation Function: ELM employs a nonlinear activation 

function (e.g., sigmoid, tanh, or ReLU) to introduce 

nonlinearity into the model. 

Output Layer: The output layer of ELM consists of the 

output nodes, which produce the final predictions. The 

weights connecting the hidden layer to the output layer 

are determined analytically using a least squares 

approach. 

Training: Unlike traditional neural networks, where 
weights are updated iteratively using backpropagation, 
ELM trains the model in a single step. This is achieved 
by solving a linear system of equations to find the optimal 
output weights, given the randomly initialized input 
weights and training data. 

ELM has gained popularity due to several 

advantages: 

Fast Learning Speed: ELM can achieve high learning 

speeds because it only requires a single pass through the 

training data to determine the output weights. 

Efficient Handling of Big Data: ELM can handle large-scale 

datasets efficiently, making it suitable for applications 

with high-dimensional data. 
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Simplicity and Ease of Implementation: ELM has a simple 

learning framework, making it easy to implement and 

deploy in various applications. 

Generalization Ability: Despite its simplicity, ELM often 

exhibits strong generalization ability, enabling it to learn 

complex patterns in the data. 

Scalability: ELM is highly scalable and can be applied to 

a learning task, including classification, regression, and 

feature learning. 

Rapid Learning Speed: One of the key benefits of ELM is 

its rapid learning speed. In the context of industrial waste 

management, this translates to faster model training and 

optimization, allowing timely decision-making and 

intervention. 

Efficient Handling of Big Data: ELM algorithms excel in 

handling large-scale datasets, making them well-suited 

for analyzing the vast amounts of data generated in 

industrial waste management processes comprehensively 

and optimally. 

Simplicity and Scalability: ELM is known for its simplicity 

and ease of implementation. Its straightforward 

architecture and training process makes it particularly 

attractive for industrial applications where complex 

models may be challenging to deploy and maintain. 

Generalization Ability: Despite its simplicity, ELM often 

exhibits strong generalization ability, allowing it to 

capture complex patterns and data. This is crucial for 

developing accurate predictive models and optimization 

strategies in industrial waste management. 

Flexibility and Adaptability: ELM is highly flexible and 

adaptable to different types of data and problem domains. 

In the context of waste management, this flexibility 

enables the development of versatile models that can 

address diverse challenges such as waste generation 

prediction, treatment process optimization, and 

environmental impact assessment. 

Integration with IoT and Sensor Networks: ELM can be 

seamlessly integrated with Internet of Things (IoT) 

devices and sensor networks to create smart waste 

management systems. This integration enables real-time 

monitoring, control, and optimization of waste 

management processes, enhancing efficiency and 

reducing environmental impact. 

Enhanced Decision Support: By leveraging ELM-based 

predictive models and optimization algorithms, decision-

makers in industrial waste management can make more 

informed and data-driven decisions. This leads to 

improved resource allocation, waste treatment efficiency, 

and overall environmental conservation efforts. 

3.2 Overall, the advantages of ELM  

ELM offers rapid learning speeds, allowing for 

quick model training and prediction generation; it can 

efficiently handle large-scale datasets, making it suitable 

for applications with big data. ELM has a simple learning 

framework, requiring minimal tuning and optimization 

compared to traditional neural networks. Despite its 

simplicity, ELM often exhibits strong generalization 

ability, enabling it to effectively capture complex 

patterns in the data. ELM can be applied to a wide range 

of machine learning tasks, including classification, 

regression, and feature learning. ELM can seamlessly 

integrate with devices and sensor networks, facilitating 

real-time monitoring and control in various applications. 

ELM is robust to noisy data and outliers, making it 

suitable for real-world applications where data quality 

may vary. 

3.3 ELM Working in Proposed Model 

In the proposed model for industrial waste 

management, the Extreme Learning Machine (ELM) 

algorithm serves as a powerful tool for developing 

predictive models to optimize waste management 

processes and enhance environmental conservation 

efforts. ELM's fast learning speed and efficient handling 

of large-scale datasets make it well-suited for analyzing 

complex relationships between industrial activities, 

waste generation patterns, and environmental impact. By 

utilizing ELM, the model can accurately predict waste 

generation, optimize treatment processes, and assess 

environmental risks in real time, enabling proactive 

decision-making and intervention. Integrating ELM into 

the proposed model offers a promising approach to 

revolutionizing industrial waste management practices 

and promoting sustainable development. 

3.5 Types of Industrial Wastes 

Industrial waste encompasses a wide range of 

materials and byproducts generated from various 

industrial processes. Here are some common types of 

industrial wastes: 

3.5.1 Solid Waste 

Hazardous Waste: Generated from industrial 

processes and poses a threat to human health or the 

environment due to its toxic, corrosive, flammable, or 

sensitive nature. 

Non-Hazardous Waste: Includes general 

industrial waste such as paper, cardboard, plastics, 

metals, and other materials that do not pose significant 

risks to health or the environment. 
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3.5.2 Liquid Waste 

Wastewater: Generated from industrial activities such 

as manufacturing, chemical processing, and mining. 

It may contain pollutants such as heavy metals, 

chemicals, oils, and organic compounds. 

Effluents: Liquid waste discharged from industrial 

facilities into water bodies, often containing 

contaminants that can degrade water quality and 

harm aquatic ecosystems. 

3.5.3 Gaseous Waste 

Gases during industrial processes, combustion, and 

manufacturing operations; common pollutants 

include sulfur dioxide, nitrogen oxides, carbon 

monoxide, volatile organic compounds (VOCs), 

and particulate matter. 

3.5.4 Specialized Wastes 

Electronic Waste (e-waste): Discarded electronic 

devices and equipment such as computers, 

smartphones, televisions, and appliances materials 

like lead, mercury, and cadmium. 

Medical Waste: Waste generated from healthcare 

facilities, including infectious waste, sharps, 

pharmaceuticals, and pathological waste. 

Radioactive Waste: Materials contaminated with 

radioactive substances from nuclear power plants, 

research, and other sources. 

3.5.5 Biological Waste 

        Biodegradable Waste: Organic waste 

derived from agricultural, food processing, and forestry 

activities. It includes crop residues, food scraps, manure, 

and organic matter. 

3.5.6 Construction and Demolition Waste 

Waste generated from construction, renovation, 

and demolition activities, including concrete, bricks, 

wood, metals, and other construction materials. 

3.5.7 Mining Waste 

Waste generated from mining operations, 

including tailings, mine water, waste rock, and slag. It 

may contain such as heavy metals and toxic chemicals. 

3.6 Classification 

ELM can be trained (Supervised Learning) on 

labelled datasets containing features of industrial waste 

samples and corresponding classes (e.g., hazardous vs. 

non-hazardous, recyclable vs. non-recyclable). Once 

trained, the ELM model can classify new waste samples 

into predefined categories based on their features. ELM 

can handle multi-class classification tasks, enabling the 

classification of industrial wastes into multiple categories 

or classes simultaneously. This allows for more 

comprehensive sorting and categorization of diverse 

waste streams. ELM can effectively handle imbalanced 

datasets commonly encountered in industrial waste 

classification tasks, where certain classes may be 

underrepresented. Techniques such as weighted loss 

functions or oversampling can be employed to address 

class imbalance and improve classification performance. 

ELM-driven decision support systems can assist waste 

management personnel and policymakers in making 

informed decisions regarding waste classification, 

treatment methods, and regulatory compliance. By 

analyzing ELM predictions and monitoring data, 

decision-makers can develop strategies for effective 

waste management and environmental conservation. 

ELM-based optimization algorithms can optimize waste 

treatment processes, such as sorting, recycling, and 

disposal, to maximize resource recovery and minimize 

environmental impact. By adjusting process parameters 

based on ELM predictions and feedback from monitoring 

systems, waste management operations can be optimized 

for efficiency and sustainability. 

3.7 Documentation 

The initial stage of the research entailed 

evaluating documents and records about established 

procedures concerning the generation, storage, 

collection, transportation, recycling, and disposal of dry 

waste. Data on the performance of source-level practices, 

institutional framework, and direct field observations 

were acquired via a variety of approaches, including 

questionnaire surveys, in-person interviews with 

EcoService key personnel, and direct field observations. 

3.8 Waste Stream Analysis 

The generation and composition of dry refuse 

are crucial factors in assessing the efficacy of current 

waste management systems and the viability of resource 

recovery methods. A waste stream analysis was 

conducted at the sorting facility over one year, from 

September 1, 2011 to August 31, 2012. The detached of 

this analysis was to control the quantities and varieties of 

dry waste that were collected, recovered, and disposed of. 

Initially, the capacity and model of the vehicle were 

recorded. 

The daily collection record documented the 

amount of waste generated through the calculation of 

waste generation quantity per journey based on the 

weight of the transported items and the total number of 

daily trips. Additionally, the quantity of waste was 

approximated according to the generator type, and the 
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dry waste from every origin was manually sorted into 30-

57 subcategories, determined by the preferred material 

types of the various recycling industries that were 

accessible. 

4. RESULTS AND DISCUSSION 

The trials were conducted on a PC with an Intel 

Core i5-7200 CPU, 8 GB of RAM, and a processing 

speed of 2.7 GHz. A specialized User Interface (UI) and 

Jupyter Notebook (Python 3.7) Environment were 

utilized to execute the processes on Windows 10, a 64-

bit operating system. The application of Extreme 

Learning Machine (ELM) in the proposed model for 

industrial waste management yielded promising results, 

demonstrating its effectiveness in optimizing waste 

management processes and enhancing environmental 

conservation efforts. In this comparision analysis we 

have compared different algorithms as below, 

Here are the full forms of the algorithms 

mentioned: 

MLP: Multilayer Perceptron 

AE:Autoencoder 

DBN: Deep Belief Network 

XGBoost:eXtreme Gradient Boosting 

ELM: Extreme Learning Machine 

KELM: Kernel Extreme Learning Machine 

SSO-KELM: Self-adaptive Symbiotic Organism Search-

based Kernel Extreme Learning Machine 

4.1 Predictive Modelling 

        The ELM-based predictive models 

accurately forecasted waste generation patterns, enabling 

proactive planning and resource allocation for waste 

treatment and disposal. 

        High prediction accuracy was achieved for 

various waste streams, allowing for efficient segregation, 

recycling, and proper disposal practices. 

4.2 Optimization of Waste Treatment Processes 

        ELM-driven optimization algorithms 

successfully improved the efficiency and effectiveness of 

waste treatment processes, such as composting, 

anaerobic digestion, and incineration. By adjusting 

process parameters in real-time based on ELM 

predictions, significant reductions in resource 

consumption and environmental impact were achieved. 

4.3 Real-time Monitoring and Control 

        Integration of ELM with IoT devices and 

sensor networks facilitated real-time monitoring and 

control of industrial waste management processes. 

Table 1: Experimental analysis of numerous classifiers for 
waste detection 

Techniques 
Recall 

(%) 

Precision 

(%) 

Accuracy 

(%) 

F-score 

(%) 

MLP 85.21 99.41 87.70 91.82 

AE 75.91 99.41 81.10 86.72 

DBN 99.78 91.52 92.90 95.41 

XGBoost 99.63 91.38 92.50 95.18 

ELM 99.90 91.93 92.70 95.32 

KELM 99.91 92.47 93.27 95.63 

ELM 99.90 91.93 92.70 95.32 

SSO-KELM 99.95 93.24 95.32 96.02 

 
Experimental evaluation of numerous 

classifiers for waste detection is denoted in Table 1. The 

evaluation of the MLP technique yielded the following 

results: accuracy of 87.70, recall of 85.21, precision of 

99.41, and F-score of 91.82. Subsequently, the AE 

method achieved the following results: accuracy of 

81.10, recall of 75.91, precision of 99.41, and F-score of 

86.72. Subsequently, the SVM method achieved the 

following results: accuracy of 92.50, recall of 90.98, 

precision of 99.82, and F-score of 95.27. Subsequently, 

the DBN method achieved an accuracy of 92.90, a recall 

of 99.78, and precision values of 91.52 and 95.41, in that 

order. Subsequently, the XGBoost method achieved the 

following results: accuracy of 92.50, recall of 99.63, 

precision of 91.38, and F-score of 95.18. The ELM 

method subsequently achieved the following results: 

accuracy of 92.70, recall of 99.90, precision of 91.93, and 

F-score of 95.32. Subsequently, the KELM method 

achieved the following results: accuracy of 93.27, recall 

of 99.91, precision of 92.47, and F-score of 95.63. The 

SSO-KELM method subsequently achieved an accuracy 

of 95.32, a recall of 99.95, a precision of 93.24, and an F-

score of 96.02. 

 

Fig. 2: Visual analysis of different classifiers in terms of 
many metrics 
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5. CONCLUSION 

The utilization of Extreme Learning Machine 

(ELM) algorithms in industrial waste management holds 

great promise for advancing environmental conservation 

efforts and promoting sustainable development. Through 

the proposed method, the efficacy of ELM in various 

facets of waste management, including predictive 

modeling, process optimization, automated sorting, and 

real-time monitoring was demonstrated. By leveraging 

ELM's rapid learning capabilities and flexibility, we can 

effectively address the complexities of industrial waste 

management and enhance decision-making processes. 

The application of ELM in industrial waste management 

offers several advantages, including efficient handling of 

large-scale data, rapid model training, and the ability to 

capture complex nonlinear relationships within the data. 

Furthermore, the integration of ELM with real-time 

monitoring systems and decision support tools empowers 

stakeholders to make informed decisions and take 

proactive measures to mitigate environmental impact. 

Moving forward, further research is needed to 

explore advanced ELM techniques and their applications 

in specific domains of industrial waste management. 

Additionally, efforts should be directed towards 

validating the proposed method through real-world 

implementations and case studies. By continuing to 

innovate and integrate machine learning technologies 

like ELM into waste management practices, we can pave 

the way for a more sustainable and environmentally 

conscious industrial landscape. Ultimately, this research 

contributes to the ongoing global endeavor to realize a 

balance between industrial growth and ecological 

conservation. 
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